首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220篇
  免费   22篇
电工技术   1篇
化学工业   89篇
机械仪表   4篇
建筑科学   5篇
能源动力   20篇
轻工业   57篇
水利工程   2篇
石油天然气   1篇
无线电   22篇
一般工业技术   23篇
冶金工业   1篇
原子能技术   3篇
自动化技术   14篇
  2024年   5篇
  2023年   7篇
  2022年   10篇
  2021年   21篇
  2020年   20篇
  2019年   13篇
  2018年   20篇
  2017年   17篇
  2016年   16篇
  2015年   10篇
  2014年   9篇
  2013年   25篇
  2012年   10篇
  2011年   14篇
  2010年   8篇
  2009年   5篇
  2008年   6篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2001年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1992年   2篇
  1990年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有242条查询结果,搜索用时 15 毫秒
1.
The room temperature application of sapphire as window material at higher frequencies is not feasible since its absorption coefficient increases almost linearly with increasing frequency in the millimeter wavelength region. At cryogenic temperature the absorption coefficient value decreases only by a few factors (factor of 2 to 3) in the 90 – 200 GHz region. The earlier reported temperature squared dependence (decrease) in the absorption coefficient or the loss tangent value is totally absent in our broad band continuous wave data we are reporting here (at 6.5 K, 35K, 77K and 300K) and one we reported at conferences earlier. Our results are verified by another technique. We utilize our precision millimeter wave dispersive Fourier transform spectroscopic techniques at room temperature and at cryogenic temperatures The extra high resistivity single crystal compensated silicon is no doubt the lowest loss material available at room temperature in the entire millimeter wavelength region At higher millimeter wave frequencies an extra high resistivity silicon window or an window made with extra high resistivity silicon coated with diamond film would certainly make a better candidate in the future. A single free standing synthetic diamond window seems to have higher absorption coefficient values at millimeter wavelength region at this time although it is claimed that it possesses good mechanical strength and higher thermal conductivity characteristics. It certainly does not rule out the use of diamond film on a single crystal high resistivity silicon to improve its mechanical strength and thermal conductivity  相似文献   
2.
A new method to calibrate the autocollimator with small angle measurement range has been developed. This method used a system based on rotary encoder for angle measurements with self-calibration function (SelfA47). The SelfA47 has 18,000 graduation lines with angle interval of 0.02°, corresponds to 72 arcsec. Thereby this system cannot be used to calibrate the autocollimator with measurement range <72 arcsec. On the other hand, SelfA47 can be used to calibrate an electronic level. The deviation of electronic level shaped linear gradient. Therefore a small nominal gradient of electronic level can be approximated by interpolation. Since the gradient of a curve corresponds to the angle quantities, it is feasible to calibrate the autocollimator with nominal angle <72 arcsec using SelfA47 and an electronic level. In this proposed method, SelfA47 is placed horizontally on the same plane with electronic level and mirror reflector position. The electronic level value that have been corrected by SelfA47 is used as a reference. This reference value was converted to the angle, thus the angle deviation of autocollimator can be determined. The prominent uncertainty of angle measurement using this new technique derived from the uncertainty of electronic level and rotary encoder. Using this method, the expanded uncertainty of 0.36 arcsec is obtained from calibration of autocollimator with measuring range of ±20 arcsec and it is consistent statistically with the manufacturer calibration result shown by E n value is <1. In conclusion, this approach method can be applied to calibrate the autocollimator with a resolution smaller than SelfA47 as standard, but it is not recommended for the calibration of highly accurate autocollimator.  相似文献   
3.
The widespread use of the Internet and the convenient mechanism it provides, such as easy access, easy downloads, and easy copy and paste functions have made many types of unethical behaviors easier, particularly those involving students in academic settings. Among the issues in ethics within the academic environment that can be triggered by the Internet are fraudulence, plagiarism, falsification, delinquency, unauthorized help, and facility misuse. Given these issues, the study seeks to investigate the extent to which students at a public university in Malaysia engage in such unethical behavior and their relationship with the big five personality model. This study was conducted using a survey method of 252 students in three different academic faculties. The results of factor analyses confirm and refine the reliability of the scales for both big five personality variables and unethical Internet behaviors as conceptualized through Internet triggered academic dishonesty (ITADS). The findings indicate that personality traits such as (1) agreeableness, (2) conscientiousness and (3) emotional stability are significantly and negatively correlated with unethical Internet behavior in university students. Significant differences in facility misuse are also observed between the three academic faculties investigated. This research should provide significant contributions to educators in designing the computer ethics curriculum and in allowing for educational institutions as well as other organizations in developing relevant policies and guidelines on matters pertaining to academic conduct, utilization of computers and Internet, and recruitment exercises.  相似文献   
4.
The outstanding mechanical properties of soft materials i.e. natural rubber are partly due to the organic–inorganic nanomatrix structure because numerous organic microparticles are dispersed in a small amount of an inorganic nanomatrix composed of inorganic nanoparticles and organic macromolecules. Here we form an organic–inorganic nanomatrix using graft-copolymerization of a vinyl monomer with an inorganic oxide precursor onto natural rubber particles with an average diameter of 1 μm dispersed in water. The inorganic oxide precursor is converted into inorganic oxide nanoparticles through hydrolysis and condensation, forming chemical linkages between natural rubber microparticles and inorganic oxide nanoparticles. Transmission electron microscopy indicates that the organic–inorganic nanomatrix is densely filled with inorganic oxide nanoparticles and the natural rubber microparticles are dispersed in the nanomatrix. This nanomatrix composite realizes both energetic elasticity and entropic elasticity of a soft material, opening a novel field of building block chemistry with respect to a pair of organic microparticles and inorganic nanoparticles.  相似文献   
5.
Calcium binding by both native and hydroxypropyl starches was studied in aqueous media under different pH, temperature and reaction times at various calcium: starch ratios. Calcium binding was markedly influenced by pHs and temperatures of the reaction mixture. Reaction times did not show marked influence on calcium binding. Maximum calcium binding was observed in alkaline pH and at lower temperature. Most of the calcium bound within the first 20 minutes. Thus, alkaline pH and lower temperature is more favourable for calcium binding by both native and hydroxypropyl rice starches compared to acidic pH and higher temperatures.  相似文献   
6.
Progressive freeze concentration (PFC) is a process where only a large single ice crystal is formed in the system and grown on the cooling surface so that the separation between the ice crystal and the mother solution is very easy. This makes the system very simple and leads to a lower cost. The conventional setup of PFC produces ice with high purity but lower productivity than suspension freeze concentration (SFC). The volume of ice produced is also usually low. Hence, continued areas of the development for PFC system include the quest for improved productivity and better efficiency. Different kinds of design have been investigated, which are easy to operate and cost-effective besides the ability to obtain high quality of product and better efficiency of the system. The PFC system is recognized as a good alternative if high-quality products can be produced with higher productivity. In this article, previous researches on PFC designs were reviewed for the purpose of providing an understanding on methods of designing a PFC system and also to provide references for future application of PFC.  相似文献   
7.
This paper presents a collaborative beamforming (CB) technique to organize the sensor node's location in a linear array for green wireless sensor network (WSN) applications. In this method, only selected clusters and active CB nodes are needed each time to perform CB in WSNs. The proposed least-square linear array (LSLA) manages to select nodes to perform as a linear antenna array (LAA), which is similar to and as outstanding as the conventional uniform linear array (ULA). The LSLA technique is also able to solve positioning error problems that exist in the random nodes deployment. The beampattern fluctuations have been analyzed due to the random positions of sensor nodes. Performances in terms of normalized power gains are given. It is demonstrated by a simulation that the proposed technique gives similar performances to the conventional ULA and at the same time exhibits lower complexity.  相似文献   
8.
Cobalt-containing cathodes are known for their ability to operate under high-temperature applications in solid oxide fuel cells (SOFCs). Reducing the operation temperature into intermediate temperature-to-low temperature (IT-LT) zones may lead to a mismatch in the thermal expansion coefficient between the cathodes and the developed IT-LTSOFC electrolyte materials. Hence, cathode materials are adjusted to resolve this issue. Studies on IT-LTSOFC propose cobalt-free cathodes as an alternative way to produce high electrochemical performance cells for operation within the IT-LT range. Novel cobalt-free cathode powders are developed using perovskite structured materials, such as strontium ferrite oxide, as the main components together with dopants. This paper reviews various studies on cobalt-free cathode development, including the most important parameter in determining cathode performance, namely, the polarization resistance of SOFC cathodes.  相似文献   
9.
10.
Novel, cost-effective, high-performance, and environment-friendly electrode binders, comprising polyvinyl alcohol chemical hydrogel (PCH) and chitosan chemical hydrogel (CCH), are reported for direct borohydride fuel cells (DBFCs). PCH and CCH binders-based electrodes have been fabricated using a novel, simple, cost-effective, time-effective, and environmentally benign technique. Morphologies and electrochemical performance in DBFCs of the chemical hydrogel binder-based electrodes have been compared with those of Nafion® binder-based electrodes. Relationships between the performance of binders in DBFCs with structural features of the polymers and the polymer-based chemical hydrogels are discussed. The CCH binder exhibited better performance than a Nafion® binder whereas the PCH binder exhibited comparable performance to Nafion® in DBFCs operating at elevated cell temperatures. The better performance of CCH binder at higher operating cell temperatures has been ascribed to the hydrophilic nature and water retention characteristics of chitosan. DBFCs employing CCH binder-based electrodes and a Nafion®-117 membrane as an electrolyte exhibited a maximum peak power density of about 589 mW cm−2 at 70 °C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号