首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   10篇
电工技术   1篇
化学工业   38篇
能源动力   6篇
轻工业   6篇
无线电   9篇
一般工业技术   29篇
冶金工业   2篇
原子能技术   2篇
自动化技术   17篇
  2023年   3篇
  2022年   6篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   6篇
  2016年   1篇
  2015年   8篇
  2014年   6篇
  2013年   7篇
  2012年   16篇
  2011年   13篇
  2010年   6篇
  2009年   3篇
  2008年   5篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  2002年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1980年   1篇
  1975年   1篇
  1969年   1篇
排序方式: 共有110条查询结果,搜索用时 15 毫秒
1.
The synthesis of nanoparticles from noble metals has received high attention from researchers due to their unique properties and their wide range of applications. Silver nanoparticles (AgNPs), in particular, show a remarkable inhibitory effect against microorganisms and viruses. Various methods have been developed to obtain AgNPs, however the stability of such nanostructures over time is still challenging. Researchers attempt to obtain particular shapes and sizes in order to tailor AgNPs properties for specific areas, such as biochemistry, biology, agriculture, electronics, medicine, and industry. The aim of this study was to design AgNPs with improved antimicrobial characteristics and stability. Two different wet chemical routes were considered: synthesis being performed (i) reduction method at room temperatures and (ii) solvothermal method at high temperature. Here, we show that the antimicrobial properties of the obtained AgNPs, are influenced by their synthesis route, which impact on the size and shape of the structures. This work analyses and compares the antimicrobial properties of the obtained AgNPs, based on their structure, sizes and morphologies which are influenced, in turn, not only by the type or quantities of precursors used but also by the temperature of the reaction. Generally, AgNPs obtained by solvothermal, at raised temperature, registered better antimicrobial activity as compared to NPs obtained by reduction method at room temperature.  相似文献   
2.
In the first editorial of this two-part special issue, we pointed out that one of the biggest trends in wireless broadband, radar, sonar, and broadcasting technology is software RF processing and digital front-end [1]. This  相似文献   
3.
Chemistry and processing have to be judiciously combined to structure the membranes at various length scales to achieve efficient properties for polymer electrolyte membrane fuel cell to make it competitive for transport. Characterizing the proton transport at various length and space scales and understanding the interplays between the nanostructuration, the confinement effect, the interactions, and connectivity are consequently needed. The goal here is to study the proton transport in multiscale, electrospun hybrid membranes (EHMs) at length scales ranging from molecular to macroscopic by using complementary techniques, i.e., electrochemical impedance spectroscopy, pulsed field gradient‐NMR spectroscopy, and quasielastic neutron scattering. Highly conductive hybrid membranes (EHMs) are produced and their performances are rationalized taken into account the balances existing between local interaction driven mobility and large‐scale connectivity effects. It is found that the water diffusion coefficient can be locally decreased (2 × 10?6 cm2 s?1) due to weak interactions with the silica network, but the macroscopic diffusion coefficient is still high (9.6 × 10?6 cm2 s?1). These results highlight that EHMs have slow dynamics at the local scale without being detrimental for long‐range proton transport. This is possible through the nanostructuration of the membranes, controlled via processing and chemistry.  相似文献   
4.
Modern medical imaging modalities provide large amounts of information in both the spatial and temporal domains and the incorporation of this information in a coherent algorithmic framework is a significant challenge. In this paper, we present a novel and intuitive approach to combine 3-D spatial and temporal (3-D + time) magnetic resonance imaging (MRI) data in an integrated segmentation algorithm to extract the myocardium of the left ventricle. A novel level-set segmentation process is developed that simultaneously delineates and tracks the boundaries of the left ventricle muscle. By encoding prior knowledge about cardiac temporal evolution in a parametric framework, an expectation-maximization algorithm optimally tracks the myocardial deformation over the cardiac cycle. The expectation step deforms the level-set function while the maximization step updates the prior temporal model parameters to perform the segmentation in a nonrigid sense.  相似文献   
5.
One of the biggest technology trends in wirelessbroadband, radar, sonar, and broadcasting systems issoftware radio frequency processing and digitalfront-end. This trend encompasses a broad range oftopics, from circuit design and signal processing to systemintegration. It includes digital up-conversion (DUC) and  相似文献   
6.
While a hexahistidine affinity tag can be introduced at protein termini or internal sites by standard molecular biology procedures for purification, immobilization, or labeling of proteins, here the versatility of this concept is exploited for the chemical preparation of novel hexahistidine‐tagged single‐walled carbon nanotubes (His6‐tagSWNTs), a novel hard template useful for solubilizing, assembling, processing, and interfacing SWNTs in aqueous conditions. Water‐soluble and exfoliated His6‐tagSWNTs are prepared and fully characterized. This functional molecular module is able to interact via robust physisorption (π?π stacking) with the sidewall of SWNTs and combines the versatility of small, water‐soluble reporters (His6) for hierarchical directed self‐assembly (HDSA) and construction of nanocomposites. It is demonstrated that metal coordination bonds with Ni(II) can be used for the supramolecular self assembly of His6‐tagSWNTs, generating complex reticulated networks and architectures. The His6‐tagSWNTs hard template nanohybrid is further utilized for directed self‐assembly with silica nanoparticles. The versatility of the novel hybrids opens a new era for the rational design, smart (bio)functionalization, processing, interfacing, and self assembling of carbon nanotubes for the construction of multicomposites and more complex systems with controllable spatial organization and programmable properties for a wide range of applications in biology, nanoelectronics, and catalysis.  相似文献   
7.
Sinanodonta woodiana (Lea, 1834) is a large Unionid species with a real invasion success. It colonized Europe, Central America, the Indonesian Islands and recently North America. The species life cycle involves a larval parasitic stage on freshwater fish species which contributes to the spread of the mussel. In this paper we describe, for the first time, eight polymorphic microsatellite loci for the species Sinanodonta woodiana. The genetic screening of individuals confirmed that all loci were highly polymorphic. The number of alleles per locus ranged from 7 to 14 and the observed heterozygosity ranged from 0.650 to 0.950. These loci should prove useful to study the species population genetics which could help to infer important aspects of the invasion process.  相似文献   
8.
Magnetoelectric composites of xNiFe2O4–(1 ? x)Pb(Zr,Ti)O3 with x = 2, 5, 10, 20, 30% were prepared by citrate–nitrate combustion using PZT-based template powders. In order to ensure a better connectivity of dissimilar phases, we have used chemical methods for preparation in situ composites, followed by adequate sintering procedure. The structural, microstructural and functional properties of di-phase magnetoelectric composites of NiFe2O4–PZT are reported. The XRD analysis is demonstrating the synthesis of pure ferrite phase directly on the ferroelectric templates. An excellent mixing was obtained in the composite powders, as proved by a detailed SEM analysis.The magnetic and dielectric behaviors of the ceramic composites vary with the ratio of the two phases. The dielectric behavior is greatly influenced by the magnetic phase. The magnetoelectric (ME) coefficient was measured as a function of applied DC magnetic field. The maximum ME coefficient (dE/dH) varies from 0.0011 mV/(cm Oe) to 0.5 mV/(cm Oe) with increasing of NF addition.  相似文献   
9.
The present work continues the previous studies concerning the synthesis and characterization of molecularly imprinted polymers (MIPs) with sclareol as template and three poly(acrylonitrile‐co‐acrylic acid) (AN:AA) copolymers with different ratios between monomers as matrices. The previous studies of rheology, elemental analysis, infrared spectroscopy, size exclusion chromatography, thermogravimetry, differential scanning calorimetry, batch rebinding tests, and Scatchard analysis, which confirmed the molecular imprinting, are being completed with the current equilibrium and kinetic adsorption studies. For this purpose, eight adsorption isotherms and three kinetic adsorption models were applied to six sets of experimental data obtained after three sclareol‐imprinted adsorbents (MIPs) and three nonimprinted adsorbents (NIPs) were submitted to batch adsorption experiments. After ordering the adsorption models according to the “minimum sum of normalized errors (SNE)” criteria, it was concluded that the adsorption in sclareol imprinted AN:AA copolymers is characterized by low surface coverage, takes place on heterogeneous binding sites and is reversible, while for NIPs the results suggest a difficult adsorption and/or easiness of template extraction, and that NIPs have homogeneous, but nonimprinted micropores. For the kinetic experiments, the minimum SNE for MIPs points to the first order kinetic model, fact that suggests a physical adsorption of template molecules on the imprinted sites. POLYM. ENG. SCI., 55:1152–1162, 2015. © 2014 Society of Plastics Engineers  相似文献   
10.
Aerial parts of Veronica species are used in Romanian traditional medicine for the treatment of various conditions like kidney diseases, cough, and catarrh, and are known for their wound-healing properties. In the present study, the phenolic and sterolic content and the antioxidant and antimicrobial activities of three Veronica species (Plantaginaceae), V. officinalis L., V. teucrium L. and V. orchidea Crantz, were studied. The identification and quantification of several phenolic compounds and phytosterols were performed using LC/MS techniques and the main components were p-coumaric acid, ferulic acid, luteoline, hispidulin and β-sitosterol. More than that, hispidulin, eupatorin and eupatilin were detected for the first time in the Veronica genus. Nevertheless, representatives of the Veronica genus were never investigated in terms of their phytosterol content. The antioxidant potential investigated by Trolox equivelents antioxidant capacity (TEAC) and EPR spectroscopy revealed that V. officinalis and V. orchidea extracts presented similar antioxidant capacities, whilst the values registered for V. teucrium extract are lower. Regarding the antimicrobial activity of the investigated species, Staphylococcus aureus, Listeria monocytogenes and Listeria ivanovii were the most sensitive strains with MIC values between 3.9 and 15.62 mg/mL. The results obtained by this study may serve to promote better use of representatives from the genus Veronica as antioxidant and antimicrobial agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号