首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   217篇
  免费   21篇
  国内免费   2篇
化学工业   75篇
金属工艺   3篇
机械仪表   4篇
建筑科学   8篇
矿业工程   1篇
能源动力   19篇
轻工业   32篇
水利工程   3篇
石油天然气   2篇
无线电   18篇
一般工业技术   36篇
冶金工业   11篇
自动化技术   28篇
  2024年   1篇
  2023年   4篇
  2022年   8篇
  2021年   18篇
  2020年   13篇
  2019年   12篇
  2018年   23篇
  2017年   19篇
  2016年   22篇
  2015年   15篇
  2014年   7篇
  2013年   22篇
  2012年   13篇
  2011年   10篇
  2010年   11篇
  2009年   9篇
  2008年   9篇
  2007年   6篇
  2006年   4篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1998年   2篇
排序方式: 共有240条查询结果,搜索用时 15 毫秒
1.
The qualitative properties of processed cheese (PC) fortified with different levels of asparagus powder (AP) (0.5%, 1% and 1.5% wt/wt) were evaluated during storage. AP decreased the pH and lipolysis indexes and increased the phenolic content, antioxidant activity and proteolysis of the processed cheeses. AP made the structure of the cheese more elastic, increased the rigidity and decreased the spreadability compared with the control sample, which corresponded to the results obtained using dynamic oscillatory rheometry. The results showed that AP as a rich source of bioactive components could be used for the fortification of processed cheeses.  相似文献   
2.
The role of Ag in simultaneously catalyzing NO reduction and C3H6 oxidation was shown to be strongly dependent on the redox properties of its local environment. Under an atmosphere of 1,000 ppm NO, 3,000 ppm C3H6, and 1% O2 and a GHSV of 30,000 h−1, a perovskite La0.88Ag0.12FeO3 prepared by reactive grinding is active giving a complete NO conversion and 92% C3H6 conversion at 500 °C. These values are much higher than the NO conversion of 55% and C3H6 conversion of 45% obtained over a 3 wt.% Ag/Al2O3 catalyst under the same conditions. Under an excess of oxygen (10% O2) a good SCR performance with a plateau of N2 yield above 97% over a wide temperature window of 350–500 °C along with C3H6 conversion of 90% at 500 °C was observed over Ag/Al2O3, while minor N2 yields (∼10% at 250–350 °C) and high C3H6 conversions (reaching ∼100% at 450 °C) were obtained over La0.88Ag0.12FeO3. Abundant molecular oxygen is desorbed from Ag substituted perovskite after 10% O2 adsorption as verified by O2- temperature programmed desorption (TPD). This reflects the strongly oxidative properties of La0.88Ag0.12FeO3, which lead to a satisfactory NO reduction at 1% O2 due to the ease of nitrate formation but to a significant C3H6 combustion above that value. The formation of nitrate species over the less oxidizing Ag/Al2O3 was accelerated under an excess of oxygen resulting in an excellent lean NO reduction behavior. The redox properties of silver catalysts could be adjusted via mixing perovskite with alumina for an optimal elimination of both NO and C3H6 over the whole range of oxygen concentration between 0 to 10%.  相似文献   
3.
Given a set S of sites and a set O of weighted objects, an optimal location query finds the location(s) where introducing a new site maximizes the total weight of the objects that are closer to the new site than to any other site. With such a query, for instance, a franchise corporation (e.g., McDonald’s) can find a location to open a new store such that the number of potential store customers (i.e., people living close to the store) is maximized. Optimal location queries are computationally complex to compute and require efficient solutions that scale with large datasets. Previously, two specific approaches have been proposed for efficient computation of optimal location queries. However, they both assume p-norm distance (namely, L1 and L2/Euclidean); hence, they are not applicable where sites and objects are located on spatial networks. In this article, we focus on optimal network location (ONL) queries, i.e., optimal location queries in which objects and sites reside on a spatial network. We introduce two complementary approaches, namely EONL (short for Expansion-based ONL) and BONL (short for Bound-based ONL), which enable efficient computation of ONL queries with datasets of uniform and skewed distributions, respectively. Moreover, with an extensive experimental study we verify and compare the efficiency of our proposed approaches with real world datasets, and we demonstrate the importance of considering network distance (rather than p-norm distance) with ONL queries.  相似文献   
4.
Crystalline α- and γ-Al2O3 exhibit in many applications high wear resistance, chemical resistance, and hot hardness, making them interesting materials for production engineering. To synthesize α-Al2O3 with high coating thickness of s ≥ 10 μm, chemical vapor deposition at temperatures T > 1000 °C is well established. However, there are almost no studies dealing with the synthesis of thick α-Al2O3 by physical vapor deposition (PVD) at high temperatures T > 700 °C. High-temperature deposition of thick coatings can be realized by means of the dense hollow cathode plasma, combined with the transport function of the plasma gas in high-speed (HS) PVD. Herein, crystalline α- and γ-Al2O3 films are deposited on cemented carbides at substrate temperatures T s ≈ 570 °C and T s ≈ 780 °C by HS-PVD. These coatings exhibit a thickness up to s = 20 μm. Moreover, phase analysis presents α-phases in coatings synthesized at substrate temperature of T s ≈ 780 °C with significant higher hardness than films by T s ≈ 570 °C. These release the potential of HS-PVD to synthesize α-Al2O3 coatings with high thickness. Thereby, a higher thickness of these coatings is beneficial for the wear protection of turning and die casting tools.  相似文献   
5.
A facile method for the synthesis of thermotropic liquid crystalline cholesteryl cetyl ether (CCE) was carried out from cholesterol and cetyl alcohol using montmorillonite K-10 as an acid catalyst. The aim of this study was to investigate the use of liquid crystalline blends of CCE and cholesteryl oleyl carbonate (COC) with appropriate crystal to smectic phase temperature (T c?Cs) just above body temperature as a temperature-modulated drug permeation system. Using 30/70?mol ratio of COC/CCE, a mixture of desirable phase transition temperature was obtained. The phase transition behavior of COC/CCE binary liquid crystalline mixture was established by differential scanning calorimetry and polarizing optical microsopy. The COC/CCE-embedded cellulose nitrate membrane was used by an in vitro drug penetration studies. Paracetamol and mesalazine were chosen as hydrophobic and hydrophilic drug models, respectively. Paracetamol permeability through the membrane was higher at temperatures above the phase transition of liquid crystal (LC) blends (39?°C) than its permeability below the phase transition temperature of liquid crystal blends (30?°C). The drug penetration through LC-embedded cellulose membrane was influenced by the pore size of the membrane and therefore the adsorbed amount of LC. There was no penetration of mesalazine through that membrane presumably, due to the differences in hydrophilicity of LC-embedded membrane and permeated drug.  相似文献   
6.
7.
The mechanism of heterogeneous grain refining of aluminum by ultrafine elemental boron particles was investigated. In order to facilitate the observation of the boron-aluminum interface, a boron filament was introduced in a melt at 1013 K (740 °C) containing different levels of Ti. The Al/B interface was studied using transmission electron microscopy and different phases were identified using the electron diffraction method. The experimental results showed that boron is dissolved in pure aluminum while its dissolution is inhibited in presence of titanium solute. A thin layer of TiB2 formed at the surface of boron thickens with residence time in the melt. The mechanisms by which aluminum is crystallized on boron are discussed.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号