首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   2篇
化学工业   2篇
轻工业   2篇
  2019年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
2.
In this study, nanocomposites of poly(vinyl chloride) (PVC), using the synthesized titanium dioxide (TiO2) nanorods and commercial nanopowder of titanium dioxide (Degussa P25) were produced by melt blending. The presence of TiO2 nanorods in PVC matrix led to an improvement in mechanical properties of PVC nanocomposites in comparison with unfilled PVC. The photocatalytic degradation behavior of PVC nanocomposites were investigated by measuring their structural change evaluations, surface tension, and mechanical properties before and after UV exposure for 500 h. It was found that mechanical and physical properties of PVC nanocomposites are not reduced significantly after UV exposure in the presence of TiO2 nanorods in comparison with the presence of TiO2 nanoparticles, which can be due to the amorphous structure of the synthesized nanorods. Therefore, it can be concluded that TiO2 nanorods led to an improvement in photostability and mechanical properties of PVC nanocomposites. The interfacial adhesion between TiO2 nanorods and PVC matrix was also investigated. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   
3.
In this study, nanocomposites of rigid poly(vinyl chloride) (UPVC) using the synthesized carbon‐coated titanium dioxide (TiO2) nanoparticles and commercial powder of titanium dioxide (with rutile structure) were prepared by melt blending. The presence of carbon‐coated TiO2 nanoparticles with rutile structure in UPVC matrix led to an improvement in photo stability of UPVC nanocomposites in comparison with commercial UPVC. The photocatalytic degradation behavior of nanocomposites was investigated by measuring their structural changes, surface tension, and mechanical and morphological properties before and after UV exposure for 700 h. It was found that mechanical and physical properties of UPVC nanocomposites are not considerably reduced after UV exposure in the presence of carbon‐coated TiO2 nanoparticles even in small percentage of nanoparticles in comparison with the presence of commercial TiO2 particles. Therefore, it can be concluded that UPVC/TiO2 nanocomposite with low content of carbon‐coated TiO2 nanoparticles(0.25 wt %) illustrated high stability under light exposure. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40228.  相似文献   
4.
Abstract

This systematic review and meta-analysis of randomized controlled trials (RCTs) was performed to summarize the effect of caffeine intake on weight loss. We searched the following databases until November 2017: MEDLINE, EMBASE, Web of Science, and Cochrane Central Register of Controlled Trials. The relevant data were extracted and assessed for quality of the studies according to the Cochrane risk of bias tool. We estimated an intake-status regression coefficient (Beta) for each primary study and estimated the overall pooled Beta and SE using random effects meta-analysis on a double-log scale. Heterogeneity between studies was assessed by the Cochran Q statistic and I-squared tests (I2). Thirteen RCTs with 606 participants were included in the meta-analyses. The overall pooled Beta for the effect of caffeine intake was 0.29 (95%CI: 0.19, 0.40; Q = 124.5, I2?=?91.2%) for weigh, 0.23 (95%CI: 0.09, 0.36; Q = 71.0, I2?=?93.0%) for BMI, and 0.36 (95% CI: 0.24, 0.48; Q = 167.36, I2?=?94.0%) for fat mass. For every doubling in caffeine intake, the mean reduction in weight, BMI, and fat mass increased 2 Beta-fold (20.29 = 1.22, 20.23 = 1.17, and 20.36 = 1.28), which corresponding to 22, 17, and 28 percent, respectively. Overall, the current meta-analysis demonstrated that caffeine intake might promote weight, BMI and body fat reduction.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号