首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101009篇
  免费   2738篇
  国内免费   1292篇
电工技术   1963篇
技术理论   5篇
综合类   3620篇
化学工业   14165篇
金属工艺   5731篇
机械仪表   4123篇
建筑科学   3524篇
矿业工程   1126篇
能源动力   1683篇
轻工业   4901篇
水利工程   1641篇
石油天然气   1247篇
武器工业   184篇
无线电   11203篇
一般工业技术   18391篇
冶金工业   3510篇
原子能技术   413篇
自动化技术   27609篇
  2024年   81篇
  2023年   292篇
  2022年   616篇
  2021年   850篇
  2020年   644篇
  2019年   512篇
  2018年   14946篇
  2017年   13992篇
  2016年   10525篇
  2015年   1393篇
  2014年   1178篇
  2013年   1227篇
  2012年   4348篇
  2011年   10582篇
  2010年   9363篇
  2009年   6601篇
  2008年   7709篇
  2007年   8700篇
  2006年   981篇
  2005年   1956篇
  2004年   1711篇
  2003年   1747篇
  2002年   1191篇
  2001年   657篇
  2000年   628篇
  1999年   442篇
  1998年   305篇
  1997年   214篇
  1996年   254篇
  1995年   176篇
  1994年   158篇
  1993年   94篇
  1992年   77篇
  1991年   88篇
  1990年   44篇
  1989年   40篇
  1988年   35篇
  1969年   27篇
  1968年   43篇
  1967年   33篇
  1966年   42篇
  1965年   44篇
  1963年   28篇
  1960年   30篇
  1959年   35篇
  1958年   37篇
  1957年   36篇
  1956年   34篇
  1955年   63篇
  1954年   68篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
3.
The exploitation of recycled carbonaceous catalysts from renewable biomass resources such as chitin is a crucial issue for the development of the sustainable society. In this article, the chitin-based N and O doped carbon microspheres (ChC) were fabricated by a simple dissolution, sol–gel transformation, and the carbonization methods. Subsequently, the novel magnetic Ag-Fe3O4@chitin-based carbon microspheres catalyst (MChC) was successfully constructed through the in situ redox reaction. The as-prepared MChC possessed rich micropores with high-surface area, and a narrow size distribution (50–120 μm). The Ag-Fe3O4 nanoparticles were immobilized through the interaction with C, N, and O atoms in the pores of MChC. The reduction of 4-nitrophenol was applied to evaluate the catalytic activity of MChC. 4-Nitrophenol (4-NP) could be fully reduced to 4-aminophenol (4-AP) in 5 min with the catalyst MChC-45. Moreover, MChC could be collected in solution with an external magnet in 8 s and remained relatively high-catalytic activity after 10 cycle times. This work provided novel ideas for the fabrication of doped carbon material from biomass and promoted its utilization in nanocatalytic applications.  相似文献   
4.
With the advent of mobile technologies, well-designed fraction apps can be used to help children gain fraction knowledge, a challenging topic for both teachers and students. The present pilot study adopted a quasi-experimental design to investigate whether children can learn fraction concepts equally well if half of the lesson time (20 min) is replaced with game-based learning. Keeping the total lesson time (40 min) identical, the control group (N = 33) received traditional instruction, and the experimental group (N = 32) was presented with a blended learning approach spending half of the class time (20 min) playing tablet-based fraction games, where each of the learners had their own tablet. The results suggested that in the posttest, the experimental group achieved similar learning gains to the control group and appear to have achieved better performance in the transfer test than the control group. This paper also discusses the efficiency of game-based learning, the mechanism of how fraction games might enhance learning, and the potential of integrating game-based learning in educational settings.  相似文献   
5.
Engineering novel Sn-based bimetallic materials could provide intriguing catalytic properties to boost the electrochemical CO2 reduction. Herein, the first synthesis of homogeneous Sn1−xBix alloy nanoparticles (x up to 0.20) with native Bi-doped amorphous SnOx shells for efficient CO2 reduction is reported. The Bi-SnOx nanoshells boost the production of formate with high Faradaic efficiencies (>90%) over a wide potential window (−0.67 to −0.92 V vs RHE) with low overpotentials, outperforming current tin oxide catalysts. The state-of-the-art Bi-SnOx nanoshells derived from Sn0.80Bi0.20 alloy nanoparticles exhibit a great partial current density of 74.6 mA cm−2 and high Faradaic efficiency of 95.8%. The detailed electrocatalytic analyses and corresponding density functional theory calculations simultaneously reveal that the incorporation of Bi atoms into Sn species facilitates formate production by suppressing the formation of H2 and CO.  相似文献   
6.
7.
8.
9.
Lithium-sulfur batteries (LSBs) are considered a promising next-generation energy storage device owing to their high theoretical energy density. However, their overall performance is limited by several critical issues such as lithium polysulfide (PS) shuttles, low sulfur utilization, and unstable Li metal anodes. Despite recent huge progress, the electrolyte/sulfur ratio (E/S) used is usually very high (≥20 µL mg−1), which greatly reduces the practical energy density of devices. To push forward LSBs from the lab to the industry, considerable attention is devoted to reducing E/S while ensuring the electrochemical performance. To date, however, few reviews have comprehensively elucidated the possible strategies to achieve that purpose. In this review, recent advances in low E/S cathodes and anodes based on the issues resulting from low E/S and the corresponding solutions are summarized. These will be beneficial for a systematic understanding of the rational design ideas and research trends of low E/S LSBs. In particular, three strategies are proposed for cathodes: preventing PS formation/aggregation to avoid inadequate dissolution, designing multifunctional macroporous networks to address incomplete infiltration, and utilizing an imprison strategy to relieve the adsorption dependence on specific surface area. Finally, the challenges and future prospects for low E/S LSBs are discussed.  相似文献   
10.
Neutrophils readily infiltrate infection foci, phagocytose and usually destroy microbes. In tuberculosis (TB), a chronic pulmonary infection caused by Mycobacterium tuberculosis (Mtb), neutrophils harbor bacilli, are abundant in tissue lesions, and their abundances in blood correlate with poor disease outcomes in patients. The biology of these innate immune cells in TB is complex. Neutrophils have been assigned host-beneficial as well as deleterious roles. The short lifespan of neutrophils purified from blood poses challenges to cell biology studies, leaving intracellular biological processes and the precise consequences of Mtb–neutrophil interactions ill-defined. The phenotypic heterogeneity of neutrophils, and their propensity to engage in cellular cross-talk and to exert various functions during homeostasis and disease, have recently been reported, and such observations are newly emerging in TB. Here, we review the interactions of neutrophils with Mtb, including subcellular events and cell fate upon infection, and summarize the cross-talks between neutrophils and lung-residing and -recruited cells. We highlight the roles of neutrophils in TB pathophysiology, discussing recent findings from distinct models of pulmonary TB, and emphasize technical advances that could facilitate the discovery of novel neutrophil-related disease mechanisms and enrich our knowledge of TB pathogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号