首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   5篇
化学工业   24篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
This article focuses on the reinforcement of hydrogenated acrylonitrile butadiene rubber (HNBR) by cotton fiber as natural reinforcing filler. The effect of fiber alignment on the properties of HNBR compounds and vulcanizates is investigated. Properties of interest include rheological behavior, cure, tensile, abrasion, and dynamic mechanical properties which are correlated to the magnitudes of state‐of‐mix, bound rubber content, crosslink density and fiber alignment. Results obtained reveal that mechanical properties of rubber composites are improved dramatically by the addition of cotton fiber due to the enhanced hydrodynamic effect in association with crosslink density. Furthermore, the degree of fiber alignment is found to depend strongly on shear strain. The results demonstrate the importance of fiber alignment controlled efficiently by shear strain. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41090.  相似文献   
2.
Tire tread compounds based on various rubber types, that is, solution styrene-butadiene rubber (SSBR), functionalized (propylamine and dimethoxysilane) solution styrene-butadiene rubber (F-SSBR), natural rubber (NR), chloroacetate-modified natural rubber (CNR), and their blends, were prepared and used as raw rubbers. Properties of tire tread compounds and tire performance were then investigated. Due to the presence of chloroacetate group on its mainchains, CNR demonstrates increases in glass transition temperature and rubber-filler interaction compared to NR leading to a significant improvement in tire performance, particularly wet grip (WG; ~88%), fuel-saving efficiency (FSE; ~15%), and abrasion resistance (~11%). Similarly, F-SSBR shows a greater tire performance than SSBR (~20, ~13, and ~7% improvements in WG, FSE, and abrasion resistance, respectively). Among the rubber blends, F-SSBR/CNR gives the highest tire performance, followed by F-SSBR/NR, SSBR/CNR, and SSBR/NR, respectively. The results suggest the significant enhancement in properties of tire tread compounds by the presence of active functional groups in NR and SSBR molecules. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 137, 48696.  相似文献   
3.
This work studied the properties of spent coffee ground (SCG) filled natural rubber (NR). The SCG was initially characterized by various techniques, prior to being added into rubber. Results revealed that SCG had relatively large particle size with very low specific surface area. It is mainly composed of organic compounds (such as protein, fatty acid, cellulose, hemicellulose, and lignin) with small quantity of inorganic substances (oxides of potassium, silicon, magnesium, calcium, and phosphorous). The incorporation of SCG in NR gave relatively low reinforcement and tended to retard vulcanization due to the presence of hydroxyl groups on the SCG surface. In addition to untreated SCG, reinforcement of SCG treated by liquid epoxidized natural rubber (LENR) and bis ‐ ( 3‐ triethoxysilylpropyl) tetrasulfide (TESPT) was investigated. Improvement of rubber properties was observed when SCG surface was treated. Overall, TESPT‐treated SCG gave the rubber with the highest mechanical properties, followed by LENR‐treated SCG and untreated SCG, respectively. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46060.  相似文献   
4.
Reinforced rubbers are complex compared to unfilled systems. There are differences in the mechanisms affecting network molecular structure as well as properties of the rubber materials. In this article investigation of crosslink network and untied network defects on a molecular level of unfilled and carbon black filled ethylene‐propylene‐diene terpolymer was carried out using proton solid‐state double‐quantum NMR spectroscopy. The results show that the filled system demonstrates lower cure efficiency in conjunction with more noncoupled network defects than the unfilled one. In addition, the filled system yields the greater spatial heterogeneity because of the localization of the free radicals at the rubber–filler boundary. These strongly influence the mechanical properties of the filled rubber. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44224.  相似文献   
5.
Blends of 80/20 CPE/NR filled with various silica loadings were prepared, and their properties were determined. It was found that cure properties are influenced significantly by the addition of precipitated silica. Scorch time and cure time decrease with increasing silica loading, which could be explained by the thermal history attributed to the shear heating in the blending stage. An increase in crosslink density as a function of silica loading is believed to be caused by a migration of curatives to the NR phase. In terms of phase morphology, with increasing silica loading, the NR dispersed phase size decreases due to the increase in compound viscosity and, thus, the shear stress available for efficient blending. An increase in silica loading also enhances resistance to oil due to the decrease in the NR dispersed phase size associated with the dilution effect, but gives no significant impact on thermal aging resistance. According to the change in damping peak height associated with the shift in Tg of the CPE phase, silica appears to preferentially migrate to the CPE phase due to the strong interaction between CPE and silanol groups of the silica surfaces. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2218–2224, 2005  相似文献   
6.
The use of natural rubber (NR) for partly substituting elastomeric chlorinated polyethylene (CPE) was carried out. Sulfur curing was used to vulcanize NR phase in the blends. Mechanical, rheological, and thermal aging properties as well as oil resistance of the blends were investigated. The amount of NR in blends significantly affects properties of the blends. With NR content in blends up to 20 wt %, tensile properties are similar to those of the pure CPE, even after either oil immersion or thermal aging. Rheological properties of CPE/NR blends determined from the rubber process analyzer (RPA 2000) and parallel‐plate rheometer are controlled strongly by the blend composition. The viscoelastic behavior of pure CPE and the blends with CPE as a major component is governed by the viscous response, which could be seen from the high damping factor, particularly at high strain, the short linear viscoelastic range, and the high degree of pseudoplasticity. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1129–1135, 2004  相似文献   
7.
Two-layered vulcanisates were prepared from two rubbers with different dynamic properties, and the bulk dynamic properties of the layered rubber vulcanisates were assessed. The results reveal that the bulk dynamic properties are strongly dependent on a layer thickness ratio. For the specimens in which each layer has similar compressive modulus and dynamic properties, the relationship between the bulk dynamic properties and the layer thickness ratio obeys a rule of mixture. However, for the specimens in which each layer has a large difference in compressive modulus, some deviation from the rule of mixture towards the layer with relatively large deformability (i.e., the layer with relatively low compressive modulus) is observed.  相似文献   
8.
The present work aims to study the relationship among the thermal ageing stability, dynamic properties, cure systems, and antioxidants in natural rubber (NR) vulcanisates. Thermal degradation behavior of NR vulcanisates has been investigated and correlated to the changes in cross-link density, tensile and dynamic mechanical properties. The results obtained show that thermal ageing properties of NR vulcanisates depend strongly on cross-link density, which changes during thermal oxidative ageing or the so-called postcuring effect. In addition, the increases in ageing temperature and time lead dominantly to the postcuring and linkages scission phenomena in vulcanisates cured with CV and EV systems, respectively. With increasing ageing temperature, the tensile strength shows sharp drop at ageing temperature higher than 70°C and 100°C for the specimens cured with CV and EV systems, respectively. The sharp drop of tensile strength of vulcanisates cured with CV system is attributed to the too high cross-link density, which is caused by the postcuring effect. In the case of the vulcanisates cured with EV system, the linkage scission causes the sharp drop of tensile strength. The addition of amine-based antioxidant appears to improve ageing properties. However, the excessive antioxidant reduces tensile properties via a decrease in cross-link density.  相似文献   
9.
For green tires, carbon black (CB) is partially replaced by silica (SiO2) in the tread formula in order to improve wet grip (WG) and fuel saving efficiency (FSE). However, such replacement inversely affects electrical conductivity of a tire resulting a greater potential for static shock or electrostatic ignition. This work aimed to improve electrical conductivity of the tread compound by partially replacing either CB or SiO2 by 0–12 phr of conductive carbon black (CCB) (with replacing ratio of 2:1) and investigating the effect of such replacement on the tire performance. Although the partial replacement of CB or SiO2 by CCB increased the magnitude of transient filler network resulting in the negative effects on heat build-up, WG and FSE of the tread vulcanizates, it significantly improved electrical conductivity. Surface resistivity decreased sharply when CB or SiO2 was replaced by 3 phr of CCB, revealing the point of percolation threshold. In addition, the partial replacement of CB or SiO2 by CCB did not cause significantly change of both hardness and tensile properties. At any given CCB loading, the SiO2 replacement provided greater surface conductivity and higher abrasion resistance with lower WG and FSE than the CB replacement.  相似文献   
10.
Influence of silanization temperature on properties of silica‐filled solution polymerized styrene butadiene rubber was investigated. Two types of silica, i.e., highly dispersible silica (HDSi) and conventional silica (CSi), were compared. Results show that the increased silanization temperature leads to the enhanced rubber–filler interaction, filler dispersion, and cross‐link density giving rise to the improvement in vulcanizate properties such as modulus, heat build‐up (HBU), and dynamic set, as well as tire performance, e.g., wet grip (WG), rolling resistance (RR), and abrasion resistance. Great care, however, must be taken to avoid the scorching phenomenon during the mixing process at too high temperature. Taken as a whole, the balanced properties are found at the silanization temperature of 140°C. Surprisingly, HDSi provides insignificant differences in degree of filler dispersion, WG, and RR, compared to CSi, despite its claimed greater dispersability. Probably, the relatively long mixing time used in this experiment may override the influence of silica type. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43342.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号