首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   3篇
化学工业   20篇
能源动力   4篇
一般工业技术   1篇
  2021年   2篇
  2017年   3篇
  2016年   1篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2007年   3篇
  2006年   2篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
This research focuses on the effect of the geometry and patterns of the gas flow channel on the PEM fuel cell performance. Simulation was conducted and the results were verified by experiments. Three-dimensional, single phase, compressible and isothermal models of 5 cm2 electrodes, anode and cathode, were developed and studied by utilizing a commercial Computational Fluid Dynamics (CFD) software, FLUENT 4.5. Two types of gas flow channel were investigated: conventional and interdigitated. The results showed that the flow channel pattern does not have a significant effect on the anode cell performance, whereas it has a strong effect/influence on the cathode cell performance. The interdigitated design provides a higher limiting current density and cell performance than the conventional design on the cathode side. Moreover, the cell performance does not depend on the inlet and outlet channel widths. On the contrary, for the interdigitated design, it was influenced by the shoulder width. Finally, experiments were conducted to validate the simulation results.  相似文献   
2.
The aim of this research was to study the effect of fabrication factors on the performance of MEA of a PEM fuel cell. The MEA was prepared by using 5 cm2 of porous electrodes with Pt loading 1 mg/cm2 and Nafion 115 membrane from Electrochem Co. Ltd. The studied factors were temperature, pressure and time of compression in the range of 130–150 ‡C, 50–100 kg/cm2 and 1–5 minutes, respectively. A 2k factorial design was conducted in this study. The results showed that interaction between pressure and temperature and interaction between temperature and time of compression have significant effects on the performance of the MEA. With low pressure, but high temperature and long compression time, current density is increased. The results showed that the optimum condition was 65 kg/cm2, 137 ‡C and 5.5 min of compression time. It was also found that the force of 69 kg-cm for assembling the single cell gave the best performance.  相似文献   
3.
The hydrodynamics inside a high solid particle concentration circulating fluidized bed reactor was investigated using computational fluid dynamics simulation. Compared to a low solid particle reactor, all the conventional fluidization regimes were observed. In addition, two unconventional fluidization regimes, circulating-turbulent and dense suspension bypassing regimes, were found with only primary gas injection. The circulating-turbulent fluidization regime showed uniformly dense solid particle distribution in all the system directions, while the dense suspension bypassing fluidization regime exhibited the flow of solid particles at only one side system wall. Then, comprehensive fluidization regime clarification and mapping were evaluated using in-depth system parameters. In the circulating-turbulent fluidization regime, the total granular temperature was low compared to the adjacent fluidization regimes. In the dense suspension bypassing fluidization regime, the highest total granular temperature was obtained. The circulating-turbulent and dense suspension bypassing fluidization regimes are suitable for sorption and transportation applications, respectively.  相似文献   
4.
The effect of the operating parameters on the system hydrodynamics and mixing inside two circulating fluidized bed reactor (CFBR) risers with different ring baffle configurations were investigated using computational fluid dynamics simulations and a 24 factorial experimental design analysis. The operating parameters varied were the gas inlet velocity, and the mass flux, diameter and density of the solid particles, while the response variables were the standard deviation of the solid volume fraction (SVF) in the radial direction (SDSVF-RD) and the average SVF (ASVF). The results from the two CFBR risers with different ring baffle configurations showed a similar trend. The operating parameters that significantly affected the ASVF in both modified CFBR risers were the inlet gas velocity and solid particle mass flux, while those that significantly affected the SDSVF-RD were the inlet gas velocity and the inlet gas velocity–solid particle diameter–solid particle density interaction. For these systems, the lowest and highest ASVF was approximately 0.07 and 0.20, respectively, while the lowest and highest SDSVF-RD was 0.01 and 0.04, respectively. The low variability of the solid particle distribution and the high solid particle concentration will be suitable for chemical reactions. All the obtained results could be explained in terms of the system hydrodynamics. Finally, regression models to predict the mean solid particle concentration and variability of solid particle distribution in the system were obtained.  相似文献   
5.
The design of circulating fluidized bed systems requires the knowledge of mass transfer coefficients or Sherwood numbers. A literature review shows that these parameters in fluidized beds differ up to seven orders of magnitude.To understand the phenomena, a kinetic theory based computation was used to simulate the PSRI challenge problem I data for flow of FCC particles in a riser, with an addition of an ozone decomposition reaction. The mass transfer coefficients and the Sherwood numbers were computed using the concept of additive resistances. The Sherwood number is of the order of 4 × 10−3 and the mass transfer coefficient is of the order of 2 × 10−3 m/s, in agreement with the measured data for fluidization of small particles and the estimated values from the particle cluster diameter in part one of this paper. The Sherwood number is high near the inlet section, then decreases to a constant value with the height of the riser. The Sherwood number also varies slightly with the reaction rate constant. The conventionally computed Sherwood number measures the radial distribution of concentration caused by the fluidized bed hydrodynamics, not the diffusional resistance between the bulk and the particle surface concentration. Hence, the extremely low literature Sherwood numbers for fluidization of fine particles do not necessarily imply very poor mass transfer.  相似文献   
6.
The most common technology for postcombustion of CO2 capture is the amine solvent scrubber. The energy consumption for capturing CO2 from flue gases using amine solvent technology is 15–30% of the power plant electricity production. Hence, there is a need to develop more efficient methods of removing CO2. A circulating fluidized bed using sodium or potassium carbonates is potentially such a process, as their high decomposition pressures allow regeneration at low temperatures using waste heat rather than steam from the power plant. But equilibrium data for the sorbents require the use of several cooled stages to achieve high CO2 conversions. Here, a method of computing such a number of stages for a given CO2 conversion was developed using multiphase computational fluid dynamics. It was found that it required six equilibrium stages to remove 96% of CO2 with the initial mole fraction of 0.15 in a sorption riser. © 2017 American Institute of Chemical Engineers AIChE J, 63: 5267–5279, 2017  相似文献   
7.
Dual-bed gasifier is a new gasifier system with separated combustion and gasification zones. The two-zone separation makes it possible to increase calorific value of the producer gas. In order to develop and improve the process operation, understanding of system dynamics and parameters that describe the in-depth hydrodynamics are essential. Computational fluid dynamics is a tool that can be used to explain the complex multiphase system behavior. The considered dual-bed gasifier had 3.00 m height and the maximum width diameters of riser and downcomer were 0.14 and 0.40 m, respectively. Conservation equations of mass, momentum, energy and species for each phase were solved coupling with the kinetic theory of granular flow using ANSYS FLUENT version 12.1. Here, two-dimensional simulation had been successfully determined the flow pattern and chemical reaction corresponding with actual experimental and theoretical data. The calculated results of the solid volume fraction in the riser section showed the bubbling and slugging flow patterns. The product gas composition and gas temperature inside dual-bed gasifer reflected the advantages for this type of reactor over the other conventional gasifiers. The system turbulences were firstly explored in dual-bed system which were normal Reynolds stresses and granular temperatures. For the effect of interphase exchange coefficient model, the pressure-loop using drag force model proposed by Gidaspow was in good agreement with the experiment than the ones proposed by Wen-Yu and Syamlal-O'Brien.  相似文献   
8.
The coefficient of restitution (COR) is an important constant that represents the energy dissipation during contact between two objects. Simulation using the conventional discrete element method (DEM) involves a constant COR. This study presents a DEM simulation method that uses a parameter-dependent COR. The parameter-dependent COR was obtained from a collision incident between spherical particles and a plate surface using a drop-test apparatus. Glass and polypropylene beads of 3–6-mm diameter were used while acrylic and steel were used as the plate surfaces. The particle trajectories were captured by a high-speed camera and analyzed by an image analyzer. The COR was then correlated to a parameter-dependent COR function that depends on the material, impact velocity, and temperature. Free-fall DEM simulations using a constant COR and parameter-dependent COR were compared. The parameter-dependent COR approach obtained better agreement with experimental results than the constant-COR approach. The proposed concept could be applied for other material combinations with a wide range of operating conditions to obtain a database of parameter-dependent COR values for the simulation of solid handling applications.  相似文献   
9.
The aim of this study is to determine the effect of the main chemical components of biomass:cel ulose, hemicel-lulose and lignin, on chemical kinetics of biomass pyrolysis. The experiments were designed based on a simplex-lattice mixture design. The pyrolysis was observed by using a thermogravimetric analyzer. The curves obtained from the employed analytical method fit the experimental data (R2 N 0.9). This indicated that this method has the potential to determine the kinetic parameters such as the activation energy (Ea), frequency factor (A) and re-action order (n) for each point of the experimental design. The results obtained from the simplex-lattice mixture design indicated that cellulose had a significant effect on Ea and A, and the interaction between cellulose and lignin had an important effect on the reaction order, n. The proposed models were then proved to be useful for predicting pyrolysis behavior in real biomass and so could be used as a simple approximation for predicting the overall trend of chemical reaction kinetics.  相似文献   
10.
A 1 m in diameter and 3.55 m tall fluidized bed riser internally with water tubes, which required six equilibrium stage of riser‐sorber for capturing about 95% of CO2 emitted from a coal power plant, were designed to replace the multisingle risers. At the optimum operating condition, the temperature of the cooling tubes in the bottom, the middle and the top of the riser were kept constant values at 50, 40, and 30°C, respectively. The hot water (57°C) from lowest exchanger section can be used to preheat the spent sorbent for the regeneration in a downer. The rest of the heat for the regenertion is obtained from the stack gas (100–130°C). This new concept promises to reduce the energy consumption for CO2 removal from flue gas. The only energy requirement is for pumping fluid and fluidizing particles in the bed. © 2017 American Institute of Chemical Engineers AIChE J, 63: 5280–5289, 2017  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号