首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   2篇
化学工业   7篇
轻工业   4篇
一般工业技术   1篇
自动化技术   1篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2012年   2篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
In order for robots to effectively understand natural language commands, they must be able to acquire meaning representations that can be mapped to perceptual features in the external world. Previous approaches to learning these grounded meaning representations require detailed annotations at training time. In this paper, we present an approach to grounded language acquisition which is capable of jointly learning a policy for following natural language commands such as “Pick up the tire pallet,” as well as a mapping between specific phrases in the language and aspects of the external world; for example the mapping between the words “the tire pallet” and a specific object in the environment. Our approach assumes a parametric form for the policy that the robot uses to choose actions in response to a natural language command that factors based on the structure of the language. We use a gradient method to optimize model parameters. Our evaluation demonstrates the effectiveness of the model on a corpus of commands given to a robotic forklift by untrained users.  相似文献   
2.
3.
Verma  Krishan K.  Liu  Xi-Hui  Wu  Kai-Chao  Singh  Rajesh Kumar  Song  Qi-Qi  Malviya  Mukesh Kumar  Song  Xiu-Peng  Singh  Pratiksha  Verma  Chhedi Lal  Li  Yang-Rui 《SILICON》2020,12(6):1355-1367
Silicon - Increasing drought stress is one of the most limiting factors for agricultural crop productivity across the world. Silicon (Si) has been known to augment plant protection against drought...  相似文献   
4.
With environmental and toxicity concerns becoming more critical, there are increasing efforts to remove phthalates from polymer compounds around the globe more rapidly. Phthalates can be replaced by natural products; in particular, those obtained from vegetable oils and fats. In the present study, a natural-based plasticizer, synthesized by epoxidation of non-toxic rice bran oil (RBO) with peroxy acid generated in situ has been added to poly(vinyl chloride). The influence of various reaction parameters on epoxidation was studied by investigating the reaction ratio, temperature, reaction time and stirring speed. Epoxidized rice bran oil (ERBO) obtained from an optimized reaction condition was analyzed by iodine number and oxirane content. FTIR was used to analyze epoxy group formation. Product ERBO was obtained with 82 % oxirane conversion within 3 h of reaction period. PVC sheets were formulated using a conventional plasticizer di-(octyl) phthalate and was partially replaced by synthesized ERBO. The effect of ERBO addition was tested by mechanical properties (tensile strength, modulus, elongation-at-break, shore D hardness) and compared with commercially available ESBO (epoxidized soybean oil). ERBO presented fairly good incorporation and plasticizing performance, as demonstrated by the results of mechanical properties, exudation, migration tests, thermal stability by thermogravimetric analysis, T g values as shown by differential scanning calorimetry, replacing about 60 % of the total plasticizer.  相似文献   
5.
Journal of Materials Science - This paper illustrates the electrochemical exfoliation of graphite for the synthesis of graphene oxide (GO) with few layers. Innovative design and arrangement of...  相似文献   
6.
Polyolefins are the largest class of commercially available synthetic polymers that are extensively used in a variety of applications from commodities to engineering owing to their low cost of production, good physico-mechanical properties, light weight, good processability, and recyclability. Compared to conventional molding techniques, fused deposition modeling (FDM)-based 3D printing is a smart manufacturing technology for thermoplastics due to its low cost, ease of production of complex geometrical parts, rapid prototyping, and scalable customization. FDM 3D printing can be an ideal manufacturing technology for polyolefins to manufacture various complex parts. However, FDM 3D-printing of polyolefins is challenged bycritical printing problems like high warpage, dimensional inaccuracies, poor bed adhesion, and poor layer-to-layer adhesion. In this review, a fundamental understanding of polyolefins and their FDM 3D-printing process is established, and the recent progress of FDM 3D printing of polyolefins is summarized. Furthermore, strategies to overcome warpage and to improve mechanical strength of the 3D-printed polyolefins are provided. Finally, future prospectives of FDM 3D-printing of polyolefins are critically discussed to inspire prospective research in this field. It is believed that this review article can be tremendously useful for research work related to FDM of polyolefin-based materials.  相似文献   
7.
8.
In an ongoing effort to discover an effective, topical, dual‐function, non‐surfactant contraceptive vaginal microbicide, a novel series of 2,2′‐disulfanediylbis(3‐(substituted‐1‐yl)propane‐2,1‐diyl) disubstituted‐1‐carbodithioates were designed by using a bioisosterism approach. Thirty‐three compounds were synthesized, and interestingly, most demonstrated multiple activities: they were found to be spermicidal at a minimal effective concentration of 1–0.001 %, trichomonacidal against drug‐susceptible and resistant Trichomonas strains at minimal inhibitory concentration (MIC) ranges of 10.81–377.64 and 10.81–754.14 μM , respectively, and fungicidal at MIC 7.93–86.50 μM . These compounds were also found to be non‐cytotoxic to human cervical (HeLa) epithelial cells and vaginal microflora (Lactobacilli) in vitro. The most promising compound, 2,2′‐disulfanediylbis(3‐(pyrrolidin‐1‐yl)propane‐2,1‐diyl)dipyrrolidine‐1‐carbodithioate ( 5 ), exhibited spermicidal activity 15‐fold higher than that of the marketed spermicide Nonoxynol‐9 (N‐9) and also demonstrated microbicidal potency. To identify common structural features required for spermicidal activity, a 3D‐QSAR analysis was carried out, as well as in vivo efficacy studies and fluorescent labeling studies to determine the biological targets of compound 5 .  相似文献   
9.
10.
Sugarcane (Saccharum officinarum L.) is one of the world’s highly significant commercial crops. The amounts of synthetic nitrogen (N2) fertilizer required to grow the sugarcane plant at its initial growth stages are higher, which increases the production costs and adverse environmental consequences globally. To combat this issue, sustainable environmental and economic concerns among researchers are necessary. The endophytic diazotrophs can offer significant amounts of nitrogen to crops through the biological nitrogen fixation mediated nif gene. The nifH gene is the most extensively utilized molecular marker in nature for studying N2 fixing microbiomes. The present research intended to determine the existence of novel endophytic diazotrophs through culturable and unculturable bacterial communities (EDBCs). The EDBCs of different tissues (root, stem, and leaf) of five sugarcane cultivars (Saccharum officinarum L. cv. Badila, S. barberi Jesw.cv Pansahi, S. robustum, S. spontaneum, and S. sinense Roxb.cv Uba) were isolated and molecularly characterized to evaluate N2 fixation ability. The diversity of EDBCs was observed based on nifH gene Illumina MiSeq sequencing and a culturable approach. In this study, 319766 operational taxonomic units (OTUs) were identified from 15 samples. The minimum number of OTUs was recorded in leaf tissues of S. robustum and maximum reads in root tissues of S. spontaneum. These data were assessed to ascertain the structure, diversity, abundance, and relationship between the microbial community. A total of 40 bacterial families with 58 genera were detected in different sugarcane species. Bacterial communities exhibited substantially different alpha and beta diversity. In total, 16 out of 20 genera showed potent N2-fixation in sugarcane and other crops. According to principal component analysis (PCA) and hierarchical clustering (Bray–Curtis dis) evaluation of OTUs, bacterial microbiomes associated with root tissues differed significantly from stem and leaf tissues of sugarcane. Significant differences often were observed in EDBCs among the sugarcane tissues. We tracked and validated the plethora of individual phylum strains and assessed their nitrogenase activity with a culture-dependent technique. The current work illustrated the significant and novel results of many uncharted endophytic microbial communities in different tissues of sugarcane species, which provides an experimental system to evaluate the biological nitrogen fixation (BNF) mechanism in sugarcane. The novel endophytic microbial communities with N2-fixation ability play a remarkable and promising role in sustainable agriculture production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号