首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学工业   2篇
能源动力   1篇
轻工业   1篇
一般工业技术   1篇
冶金工业   1篇
  2012年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  1998年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
BACKGROUND: A single‐stage reactor, in which the growth of bacterial culture, induction of desulfurizing enzymes, and desulfurization reaction are carried out in a single step, was adopted to investigate desulfurization of dibenzothiophene (DBT) at high cell densities. Rhodococcus erythropolis, IGTS8 was used as the biocatalyst. Optimal conditions for bacterial growth and DBT desulfurization were investigated. RESULTS: Optimization of fermentation conditions was necessary to obtain high cell densities including controlling accumulation of acetate. Under optimal operating conditions, the maximum optical density at 600 nm (OD600) was measured to be 26.6 at 118 h of cultivation. When biodesulfurization of DBT in model oil with a high cell density culture of IGTS8 was investigated, accumulation of sulfate was found to limit the extent of desulfurization. A sulfate removal step was added to obtain a single‐stage integrated biodesulfurization process. Sulfate removal was achieved via an aqueous bleed stream and use of a separation unit to recycle the organic phase. CONCLUSION: A proof of principle of a complete system capable of biocatalyst growth, induction, desulfurization and by‐product separation was demonstrated. This system enables simplification of the biodesulfurization process and has potential to lower the operating cost of the bioprocess. Copyright © 2008 Society of Chemical Industry  相似文献   
2.
The most natural waterways in Thailand are utilized for conventional agricultures, e.g. irrigation and wastewater discharge. Concentrations of 20 organochlorine pesticides (OCPs) were measured in surface sediments collected from the tributaries of the Mae Klong River during 2003-2005. The sampling sites chosen were nearby the rice paddy which organochlorine pesticides were intensively used for crop cultivation. Solid-liquid extraction technique was used for sediment extraction, and gas chromatography with electron capture detector was applied for pesticides determination. Total concentrations of OCPs found were ranged from 4.12 to 214.91 microg g(-1) dw in the first year. In the second year, total residue concentrations in the surface sediments were in the range of 3.26-215.09 microg g(-1) dw. Concentrations of pesticides were greater in dry-season rice cultivation period in both sampling years, and heptachlor epoxide was the contaminant found at highest concentration in this study. In addition, the occurrence of some selected contaminants including DDT, DDD and DDE reflects the recent contamination in the study area. This demonstrates not only that the natural waterway was polluted and contained much pesticide residues, but it also illustrates the necessity of a continuous long-term monitoring of the affected environment.  相似文献   
3.
BACKGROUND: Many polycyclic aromatic hydrocarbon (PAH) contaminated sites also contain high levels of toxic heavy metals. The presence of heavy metals can adversely affect PAH biodegradation. Encapsulation of bacterial cells has been shown to improve survival and activity of cells under various environmental stresses. This study examined if encapsulation of a phenanthrene‐mineralizing bacterial strain could improve its survival and phenanthrene degradation in heavy metal contaminated soils. RESULTS: Alginate encapsulation did not improve survival and phenanthrene degradation by Pseudomonas sp. UG14Lr in heavy metal contaminated soil. Phenanthrene degradation by, and survival of, free cells and alginate‐encapsulated cells were similar in soil contaminated with 5 mg kg?1 dry soil of As, Cd, or Pb. The number of UG14Lr cells decreased to undetectable level when the concentration of each heavy metal was increased to 100 mg kg?1 dry soil. UG14Lr, when inoculated as free cells, survived the best and they were detected over 60 days of incubation in soil. Cells in both wet and dry alginate beads survived less well than free cells at the higher metal concentrations. Correspondingly, phenanthrene degradation in soil inoculated with free UG14Lr was better than that in soil inoculated with alginate‐encapsulated cells. CONCLUSION: Alginate encapsulation adversely affected the survival and phenanthrene degradation ability of UG14Lr cells in heavy metal contaminated soil. It is postulated that alginate may have concentrated the metals which in turn increased the toxicity to UG14Lr cells. The results are of interest to those interested in the use of encapsulation technology to formulate microbial cells for bioremediation purposes. Copyright © 2009 Society of Chemical Industry  相似文献   
4.
Constitutive expression of foreign glutamate dehydrogenase in Rhizobium etli inhibits bean plant nodulation (A. Mendoza, A. Leija, E. Martínez-Romero, G. Hernández, and J. Mora. Mol. Plant-Microbe Interact. 8:584-592, 1995). Here we report that this inhibition is overcome when controlling gdhA expression by NifA, thus delaying the GDH activity onset after nodule establishment. Expression of gdhA modifies the nitrogen partitioning inside the bacteroid, where newly synthesized ammonia is preferentially incorporated into the amino acid pool instead of being exported to the infected cells. As a consequence, the fixed nitrogen transport to the leaves, measured as the ureides content in xylem sap, is significantly reduced. Nitrogenase activity, although not nifHDK expression, is significantly reduced in bacteroids expressing gdhA, probably due to the utilization of energy and reducing power for nitrogen assimilation. Here we show that ammonia assimilation inside R. etli bacteroids is active, albeit at low levels, and when enhanced is deleterious to the symbiotic performance. This leads us to believe that further reduction of the basal nitrogen metabolism in the bacteroid might stimulate the nitrogenase activity and increase the nitrogen supply to the plant.  相似文献   
5.
Six freshwater microalgal strains in the class of Chlorophyceae, including Chlorococcum humicola, Didymocystis bicellularis, Monoraphidium contortum, Oocystis parva, Sphaerocystis sp., and Scenedesmus acutus were isolated from natural habitats in Thailand. The six strains were compared for their biomass yield, lipid content, and lipid productivity in four enriched culture media in batch mode. Significant differences were found across algal strains and culture media. The best strain was found to be C. humicola, which had the highest biomass yield of 0.113 g/l/d (in Kuhl medium), the highest lipid content of 45.94% (in BG-11 medium), and the highest lipid yield of 0.033 g/l/d (in 3NBBM medium). The 3NBBM medium, which has the lowest nitrogen concentration among the four culture media, was considered the optimal culture medium for C. humicola for lipid production. The fatty acid profile of C. humicola was also found to be affected by the culture medium. More oleic acid (C18:1) but less linolenic acid (C18:3) was accumulated in BG-11 and 3NBBM than in Kuhl and N-8 media. Lipid profiles of C. humicola were comparable to palm oil in the percentage of palmitic acid and the total amount of saturated fatty acids; however, C. humicola made more poly-unsaturated fatty acids such as linoleic (C18:2) and linolenic (C18:3) acids than oil palms. Lipids from C. humicola were believed to be acceptable for biodiesel production.  相似文献   
6.
The removal of heavy metal ions by the nonliving biomass of aquatic macrophytes was studied. We investigated Cd biosorption by dry Hydrilla verticillata biomass. Data obtained in batch experiments indicate that H. verticillata is an excellent biosorbent for Cd. Cd was rapidly adsorbed and such adsorption reached equilibrium within 20 min. The initial pH of the solution affected Cd sorption efficiency. Results obtained from the other batch experiments conformed well to those obtained using the Langmuir model. The maximum adsorption capacity q(max) for H. verticillata was 15.0 mg/g for Cd. The breakthrough curve from the continuous flow studies shows that H. verticillata in the fixed-bed column is capable of decreasing Cd concentration from 10 to a value below the detection limit of 0.02 mg/l. The presence of Zn ions affected Cd biosorption. It can be concluded that H. verticillata is a good biosorbent for treating wastewater with a low concentration of Cd contaminants.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号