首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学工业   3篇
建筑科学   1篇
  2021年   2篇
  2020年   1篇
  2017年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Verma  Priyanshu  Punetha  Deepak  Pandey  Saurabh Kumar 《SILICON》2020,12(11):2663-2671
Silicon - Silicon carbide piezoresistive pressure sensor is more suitable for harsh environment due to its wide bandgap, corrosion tolerance, excellent chemical inertness, high Young’s...  相似文献   
2.
Interface shear strength between soil and geosynthetics mainly depends on the mechanical and physical properties of soil, geosynthetics and the normal stress acting at the interface. This paper presents results of an extensive experimental investigation carried out on sand-geosynthetic interface using modified large direct shear box. The study focusses on the shearing mechanism at the sand-geosynthetic interface and the effect of different parameters on the shearing mechanism. Smooth HDPE geomembrane, nonwoven needle punched geotextile and two types of sand having different mean particle size, have been used in the present study. Microstructural investigation of deformed specimen through Field Emission Scanning Electron Microscope (FESEM) reveals the shearing mechanism which includes interlocking and fiber stretching for sand-geotextile while sliding, indentation and plowing for sand-geomembrane interface. The shearing mechanism for sand-geomembrane interface highly depends on the normal stress and degree of saturation of sand. The critical normal stress that demarcates the sliding and plowing mechanism for sand-geomembrane interface is different for dry and wet sand. The amount of scouring (or plowing) of the geomembrane surface reduces with increase in the mean particle size of sand. FESEM images revealed that the sand particles get adhered to the geotextile fibers for tests involving wet sands. The present microstructural study aided in understanding the shearing mechanism at sand-geosynthetic interface to a large extent.  相似文献   
3.
Many essential enzymes in bacteria remain promising potential targets of antibacterial agents. In this study, we discovered that dequalinium, a topical antibacterial agent, is an inhibitor of Staphylococcus aureus primase DnaG (SaDnaG) with low-micromolar minimum inhibitory concentrations against several S. aureus strains, including methicillin-resistant bacteria. Mechanistic studies of dequalinium and a series of nine of its synthesized analogues revealed that these compounds are single-stranded DNA bisintercalators that penetrate a bacterium by compromising its membrane. The best compound of this series likely interacts with DnaG directly, inhibits both staphylococcal cell growth and biofilm formation, and displays no significant hemolytic activity or toxicity to mammalian cells. This compound is an excellent lead for further development of a novel anti-staphylococcal therapeutic.  相似文献   
4.
Suman  Shreya  Punetha  Deepak  Pandey  Saurabh Kumar 《SILICON》2021,13(5):1475-1483
Silicon - Capacitive pressure sensors have become a reasonable choice due to their low power consumption, energy efficiency, and robustness. In this paper, a thorough investigation of MEMS based...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号