首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
化学工业   5篇
金属工艺   1篇
机械仪表   2篇
轻工业   1篇
无线电   1篇
一般工业技术   14篇
冶金工业   2篇
自动化技术   1篇
  2021年   1篇
  2013年   1篇
  2012年   2篇
  2011年   4篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
  1962年   1篇
排序方式: 共有27条查询结果,搜索用时 375 毫秒
1.
Combinatorial chemistry has proven to be a valuable tool for the development of new compounds. In the pharmaceutical industry, where combinatorial chemistry began, the approach has been instrumental in the high-speed development of new drugs. Due to the overwhelming success of the combinatorial methodology in the pharmaceutical industry, it has been recently applied to materials development. We have recently developed a combinatorial factory capable of preparing and evaluating on the order of 100 organic clear coatings in a day.

One of the most challenging aspects of the creation of the combinatorial factory was the development of the high throughput screening (HTS) methods for the primary coating properties of interest such as optical clarity, abrasion resistance, adhesion, and weatherability. For each property, an entirely new method was developed that allowed for rapid measurement of these properties on very small samples. This paper describes various aspects of the development of these novel measurement systems including the correlation of the HTS methods with conventional, industry standard measurement methods.  相似文献   

2.
A flexible biosensor has been developed that utilizes immobilized nucleic acid aptamers to specifically detect free nonlabeled non-nucleic acid targets such as proteins. In a model system, an anti-thrombin DNA aptamer was fluorescently labeled and covalently attached to a glass support. Thrombin in solution was selectively detected by following changes in the evanescent-wave-induced fluorescence anisotropy of the immobilized aptamer. The new biosensor can detect as little as 0.7 amol of thrombin in a 140-pL interrogated volume, has a dynamic range of 3 orders of magnitude, has an inter-sensing-element measurement precision of better than 4% RSD over the range 0-200 nM, and requires less than 10 min for sample analysis. The aptamer-sensor format is generalizable and should allow sensitive, selective, and fast determination of a wide range of analytes.  相似文献   
3.
4.
We demonstrate a new attractive approach for ubiquitous quantitative chemical or biological sensing when analog signals are acquired from conventional optical disk drives, and these signals are used for quantitative detection of optical changes of sensing films deposited on conventional CD and DVD optical disks. Our developed analytical model of the operation of this Lab-on-DVD system describes the optical response of sensing films deposited onto the read surface of optical disks by taking into account the practical aspects of system performance that include possible reagent leaching effects, water sampling (delivering) efficiency, and possible changes of the film morphology after water removal. By applying a screen-printing process, we demonstrated a laboratory-scale automated production of sensing films with an average thickness of approximately 10 microm and a thickness relative standard deviation of <3% across multiple films. Finally, we developed a system for delivery of water-sample volumes to sensing films on the disk that utilized a multifunctional jewel case assembly.  相似文献   
5.
In this paper, the theoretical sensitivity limit of the localized surface plasmon resonance (LSPR) to the surrounding dielectric environment is discussed. The presented theoretical analysis of the LSPR phenomenon is based on perturbation theory. Derived results can be further simplified assuming quasistatic limit. The developed theory shows that LSPR has a detection capability limit independent of the particle shape or arrangement. For a given structure, sensitivity is directly proportional to the resonance wavelength and depends on the fraction of the electromagnetic energy confined within the sensing volume. This fraction is always less than unity; therefore, one should not expect to find an optimized nanofeature geometry with a dramatic increase in sensitivity at a given wavelength. All theoretical results are supported by finite-difference time-domain calculations for gold nanoparticles of different geometries (rings, split rings, paired rings, and ring sandwiches). Numerical sensitivity calculations based on the shift of the extinction peak are in good agreement with values estimated by perturbation theory. Numerical analysis shows that, for thin (≤10 nm) analyte layers, sensitivity of the LSPR is comparable with a traditional surface plasmon resonance sensor and LSPR has the potential to be significantly less sensitive to temperature fluctuations.  相似文献   
6.
7.
8.
Selective gas sensing with a single pristine graphene transistor   总被引:1,自引:0,他引:1  
We show that vapors of different chemicals produce distinguishably different effects on the low-frequency noise spectra of graphene. It was found in a systematic study that some gases change the electrical resistance of graphene devices without changing their low-frequency noise spectra while other gases modify the noise spectra by inducing Lorentzian components with distinctive features. The characteristic frequency f(c) of the Lorentzian noise bulges in graphene devices is different for different chemicals and varies from f(c) = 10-20 Hz to f(c) = 1300-1600 Hz for tetrahydrofuran and chloroform vapors, respectively. The obtained results indicate that the low-frequency noise in combination with other sensing parameters can allow one to achieve the selective gas sensing with a single pristine graphene transistor. Our method of gas sensing with graphene does not require graphene surface functionalization or fabrication of an array of the devices with each tuned to a certain chemical.  相似文献   
9.
An important issue in ultrasonic nondestructive testing is the detection of flaw echoes in the presence of background noise created by instrumentation and by clutter noise. Signal averaging, autoregressive analysis, spectrum analysis, matched filtering, and the wavelet transform have all been used to filter noise in ultrasonic signals. Widely-used wavelet threshold estimation algorithms are not designed for electromagnetic acoustic transducer (EMAT) pulse-echo signals, and therefore do not exploit their unique impulse nature. The approach to ultrasonic signal filtering proposed in this paper is based on stationary wavelet packet denoising with a threshold influenced by several information sources: a statistical echo detection, the amplitude distribution of the wavelet transform coefficients, and a priori known system frequency characteristics. The proposed method was evaluated on signals measured with EMAT probes and under various SNR conditions; it outperforms the wavelet transform with the Stein unbiased risk estimate (SURE) threshold estimation method and split-spectrum processing (SSP). The results indicate SNR enhancement of 19 dB with real EMAT data.  相似文献   
10.
Passive radio frequency identification (RFID) sensors are attractive in diverse applications where sensor performance is needed at a low cost and when battery‐free operation is critical. We developed a general approach for adapting ubiquitous and cost‐effective passive 13.56‐MHz RFID tags for diverse sensing applications. In developed RFID sensors, the complex impedance of the RFID resonant antenna is measured and correlated to physical, chemical, or biological properties of interest. In contrast to known wireless sensors, developed RFID sensors combine several measured parameters from the resonant sensor antenna with multivariate data analysis and deliver unique capability for multianalyte sensing and rejection of environmental interferences with a single sensor. Theoretical calculations and experiments in an anechoic chamber demonstrate that the developed RFID sensors are immune to common electromagnetic interferences and the sensor/reader system operates within regulated emission levels. Performance of developed RFID sensors is illustrated in measurements of toxic industrial chemicals (TICs) in air with the detection limit (DL) of 80 parts per billion and in a non‐invasive monitoring of milk spoilage. Sensors selectivity is demonstrated in the detection of different vapors with individual sensors. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号