首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   2篇
化学工业   7篇
金属工艺   5篇
机械仪表   5篇
建筑科学   1篇
能源动力   4篇
石油天然气   1篇
一般工业技术   11篇
冶金工业   13篇
原子能技术   3篇
自动化技术   6篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2018年   7篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   6篇
  2010年   8篇
  2009年   3篇
  2008年   3篇
  2005年   2篇
  2004年   1篇
  2001年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1985年   1篇
  1973年   2篇
  1968年   1篇
排序方式: 共有56条查询结果,搜索用时 15 毫秒
1.
ECAP is an effective process to improve the mechanical strength and wear resistance along with mechanical and microstructural properties. AA2014 solutionized at 495 °C and aged at 195 °C was subjected to Equal Channel Angular Pressed (ECAP) through route A and Bc at room temperature. It was well proved that the mechanical strength increased due to ECAP in AA2014. In order to investigate their wear behavior after ECAP, dry sliding wear tests were conducted using vacuum tribometer at nominal loads of 10N and 30N with constant speed of 2 m/s for sliding distance of 2000 m. The co-efficient of friction and loss in volume were decreased after ECAP both in route A and Bc. The dominant wear mechanisms observed were adhesive, delamination and stick slip process. In addition to these wear mechanisms, abrasive wear also appeared along with transfer of iron particles from the counter surface to the AA2014 pin. Presence of black powder and oxide formation were observed using EDAX analysis on wear debris. Routes A and Bc showed similar wear mechanisms and characteristics which were better than in unECAPed specimens.  相似文献   
2.
This work investigates the suspension duration of the nanosized multiwalled carbon nanotubes (MWCNT) and aluminum oxide (Al2O3) in B20, B50 and B70 blends of Jatropha Methyl ester. The MWCNT and aluminum oxide (Al2O3) are added to the fuel blends in the proportions of 50 and 100 pmm separately by ultra sonication. The prepared fuel samples are characterized, and turbidity analysis was done to find the stability rate of nano-additives. The outcomes reveal the maximum stability rate for MWCNT and Al2O3 as 83.3% and 87.03%, respectively, with 50ppm in B20 over a period of eighteen days. A considerable drop in suspension was observed with the 100 ppm MWCNT and Al2O3 biodiesel blends.  相似文献   
3.
Using a specially constructed apparatus, diffusion bonding of SU 263 alloy was studied in the temperature range of 1123–1323 K and compressive stress of 90% of its yield strength at the corresponding temperatures to determine the relative importance of the process parameters, the mechanism(s) responsible for bonding and the joint characteristics. Bond quality was assessed by optical metallography and lap shear testing. The mechanism of bonding was evaluated by grain growth equation. The experimental results were compared with a model developed by Pilling [Pilling, J., 1988. The kinetics of isostatic diffusion bonding in superplastic materials. Mater. Sci. Eng. 100, 137–144] in which the void closure by creep flow and diffusion are considered. Quantified EPMA line scan analysis was carried out to confirm the bonding mechanism and to determine the composition at the interface.  相似文献   
4.
In this article, the effect of initial microstructure on the texture evolution in 2014 Al alloy during equal channel angular pressing (ECAP) through route A has been reported. Three heat treatment conditions were chosen to generate the initial microstructures, namely (i) the recrystallization anneal (as-received), (ii) solution treatment at 768 K for 1 h, and (iii) solution treatment (768 K for 1 h) plus aging at 468 K for 5 h. Texture analyses were performed using orientation distribution function (ODF) method. The texture strength after ECAP processing was different for the three samples in the order, solutionised > solutionised plus aged condition > as-received. The prominent texture components were A E /[`(A)]E \bar{A}_{E} and B E /[`(B)]E \bar{B}_{E} in addition to several weaker components for the three materials. The strong texture evolution in solutionised condition has been attributed to higher strain hardening of the matrix due to higher amount of solute. In case of the as-received as well as solutionised plus aged alloy, the weaker texture could be due to the strain scattering from extensive precipitate fragmentation and dissolution during ECAP.  相似文献   
5.
This paper presents a finite element-based model for the prediction of 2-D and 3-D internal flow problems. The Eulerian velocity correction method is used which can render a fast finite element code comparable with the finite difference methods. Nine different models for turbulent flows are incorporated in the code. A modified wall function approach for solving the energy equation with high Reynolds number models is presented for the first time. This is an extension of the wall function approach of Benim and Zinser and the method is insensitive to initial approximation. The performance of the nine turbulent models is evaluated by solving flow through pipes. The code is used to predict various internal flows such as flow in the diffuser and flow in a ribbed channel. The same Eulerian velocity correction method is extended to predict the 3-D laminar flows in various ducts. The steady state results have been compared with benchmark solutions and the agreement appears to be good.  相似文献   
6.
Aero-engines operating in dust-laden environments often encounter a lot of dust/sand that causes a severe problem to the TBCs by means of erosion. As the turbine entry temperatures are rising, molten sand is also a big concern to the life-time of TBCs.This paper deals with the TBC behavior under the combined influence of erosion and corrosion attack. Variations in TBC morphology, CMAS infiltration time and CMAS composition and their influence on the erosion resistance at room temperature were investigated. Two different EB-PVD 7YSZ morphologies consisting of a different porosity arrangement were tested in the erosion/corrosion regime. The more ‘Feathery’ structure has a better resistance to erosion compared to a more columnar ‘Normal’ structure, which leads to less degradation of the TBC. However, under the influence of CMAS infiltration the effect was found to be reversed. In general, CMAS-infiltrated EB-PVD TBCs exhibit a higher erosion resistance than the non-infiltrated ones.  相似文献   
7.
Al2O3 was deposited as a top coat on a standard 7YSZ layer (or layers) by means of EB-PVD technique and the corresponding morphology of the Al2O3/7YSZ coatings was studied in detail. This multi-layer TBC system was tested against calcium-magnesium-aluminium-silicate (CMAS) recession by performing infiltration experiments for different time intervals from 5?min to 50?h at 1250?°C using two types of synthetic CMAS compositions and Eyjafjallajökull volcanic ash (VA) from Iceland. The results show that the studied EB-PVD Al2O3/7YSZ coatings react quickly with CMAS or VA melt and form crystalline spinel (MgAl2-xFexO4) and anorthite (CaAl2Si2O4) phases. The presence of Fe-oxide in the CMAS has been found to be key element in influencing the spinel formation which was proved to be more efficient against CMAS sealing in comparison to the Fe-free CMAS compositions. Even though a rapid crystallization was assured, shrinkage cracks in the EB-PVD alumina layer produced during the crystallization heat treatment have proven to be detrimental for the CMAS/VA infiltration resistance. To overcome these microstructural drawbacks, an additional alumina deposition method, namely reaction-bonded alumina oxide (RBAO), was applied on top of EB-PVD Al2O3. RBAO acts as a sacrificial layer forming stable reaction products inhibiting further infiltration.  相似文献   
8.
In this investigation, the flow of an unsteady mixed convection boundary layer viscous nanofluid on a stretchable sheet is considered. The flow examination is affected by a magnetic field. The reason for the examination exhibited is to create models for nanomaterials that incorporate the Brownian movement and thermophoresis phenomena. The created nonlinear standard differential condition is illuminated numerically utilizing the Runge-Kutta-Gill technique and the start program. The different factors of speed, temperature, and concentration are reported and discussed. The examination shows that the speed, temperature, and concentration are lower in contrast with the consistent stream on account of an assisting flow, whereas the opposite situation is noticed in the opposing flow case. The effects of Brownian movement and thermophoresis in the concentration case are totally different.  相似文献   
9.
Ultra fine grained (1 micron size) materials usually exhibit more strength. Most of the approaches to refine microstructure lead to decrease in ductility. Cryo rolling is a successful technique; samples are rolled at cryogenic temperature, to improve strength of an age hardenable alloy with minimum loss in ductility. Aging after cryo rolling ensures good strength and ductility due to bimodal structure and nano sized precipitation of S’ phase. Al 2024 alloy are partially solutionised to retain some T-phase particles, which are very effective in accumulating dislocations during cryo-rolling, and in turn promoted the precipitation of Al2CuMg precipitates with a size of 10–40 nm. The nano sized Al2CuMg precipitates and bimodal grain structure leads to simultaneous increases in strength and ductility.  相似文献   
10.
This research primarily focuses on improving the strength of Al 5083 alloy by both the ECAP and Cryo ECAP methodology. Equal Channel Angular Pressing (ECAP) is one of the best technologies that enable the direct transformation of conventional macro grained metals into sub-micron, ultra-fine and nano grained materials. Fine grain size increases the strength and the fracture toughness of the material and provides the potential for super plastic deformation at moderate temperatures and at high strain rates. The microstructure evolution in Al 5083, subjected to Room Temperature ECAP and Cryo ECAP were analysed. ECAP was carried out using an optimized die with Channel angle ‘?’ = 90°and corner angle ‘Ψ’ = 20° through processing route A and C up to four passes. The results were thoroughly studied using TEM, SEM, and optical microscopic images. Initially the annealed sample had the grain size of 80 µm with the equi-axed grains. In Room Temperature, the hardness values and the mechanical strength were found to be increased from 88 to 410 HV and 306 to 453 MPa after four passes in route A and in route C the strength increased from 390 to 416 MPa after four ECAP passes. Moreover, in Cryo Condition, the sample was processed up to four ECAP passes at route A and route C. The hardness of 153 HV was obtained after four passes in route C and 164 HV obtained after four passes on route A. Additionally, fracture behaviour using SEM, grain size using TEM and crystallite size by X-ray diffraction studies were analyzed. It was observed that the Cryo ECAP showed marginal improvements in mechanical properties relative to the RT ECAP in case of Al 5083.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号