首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学工业   2篇
无线电   1篇
一般工业技术   2篇
  2023年   1篇
  2021年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.

Water and microbial contamination is a serious issues to aquatic system and human health. The metal selenide has a tremendous technique to degrade the dyes and bacteria.The present work reports the synthesis of ZnSe nanoparticles in a simple co-precipitation method. The synthesized samples were analyzed by structural, optical, morphological, catalytic and biological activity. The size and bandgap by annealing temperature tuning which are confirm by X-ray Diffraction and UV–Visible spectrometer. The quasi-spherical shapes were confirmed by Scanning Electron Microscope and Transmission Electron Microscope.The photo excited electrons have trapped the metals and promoting the degradation system. The release of ions to the surface was acknowledged by Photo Luminescence spectroscopy. The photocatalytic dye degradation of the Methyl Orange showed that the enhanced activity in high temperature. The photocatalytic dye degradation activity suggested that the temperature change the production of free radicals and ROS formation. The hydroxyl radicals were slewing the dye molecules and bacteria. The obtained results giving the information of ZnSe nanoparticles are one of the fascinating research areas in the current research world. Because of its large application in different field it acts as a promoting catalytic and biological application.

Graphical Abstract
  相似文献   
2.
3.
Nanoparticles of samarium barium antimonate (Ba2SmSbO6), a complex perovskite has been synthesised using an auto-ignition combustion process. The nanoparticles thus obtained have been characterised using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The particle size of the as-prepared powder was in the range 50–110?nm. Superconducting YBa2Cu3O7? δ material was synthesised through solid-state route and the thick film of YBa2Cu3O7? δ material was fabricated by dip-coating on Ba2SmSbO6 substrate. The prepared samples were subjected to various studies such as XRD, TEM, scanning electron microscopy, and resistivity measurement and the obtained results are presented and discussed.  相似文献   
4.
In the present century the small particles are unique phenomenon which can be developed by bottom-up and top-down processes. These small particles may be considered as nanoparticles which help to build up a technology called nanotechnology. Nanomaterials are those materials which possess the length scales below 100 nm and quite often they make a comparison with a human hair, which is about 80,000 nm wide. We have introduced this technology, specially the green synthesis of gold (Au) nanoparticles in silkworm (Bombyx mori L.). The gold nanoparticles clearly indicate that they have a tremendous effect on enhancement of silk proteins and thus the enhancement of the cocoon weight in silkworms. Gold nanoparticles were prepared from onion, Allium cepa L. The extracted green gold nanomaterials from A. cepa were confirmed by UV-Vis spectrophotometer, XRD, FTIR, SEM, TEM and AFM. The function of green gold nanomaterials extracted from A. cepa was tested on silkworm physiology. We have used UV for judgment of the nature of particles and spectrum peak wavelength showed an absorption peak at 535 nm and indicated the wavelength of the surface plasmon resonance in gold nanoparticles (Au NPs). In blank solutions no such absorption peak was observed at 535 nm. Moreover, the gold (Au) XRD spectrum is supposed to and does demonstrate (111), (200), (220), and (311) peaks in the assortment of superimpose on the background. The process includes the (002) trace graphite peaks, where the (111) peak appears to be exceptionally sharp and strong which helps to propose that it is gold in nature. The FTIR shows that the examined particles are gold in nature. In SEM where electrons interact with atoms in the sample, producing various signals that can be detected and that hold information about the sample's surface topography and composition. The electron beam in SEM is generally scanned in a raster scan pattern, and therefore the beam's position is combined and detects the signal to produce an image. SEM can attain a resolution better than 1 nanometer size. The transmission electron microscope helps to accelerate the electrons as a source of elucidation. The AFM measurement is made in three dimensions process and thus it may be measured as horizontal to X-Y plane. Therefore, decree (magnification) measured at Z–direction, which is normally higher than X-Y. The said repulsive force is major one in AFM. Thus the tip and sample may considered to be the specific force in AFM which may measured at Z–direction. The effect of green gold nanoparticles on mulberry silkworm (Bombyx mori L) can exaggerated the silkworm physiological function. Larvae at 50, 100, 200, and 300 ppm doses were studied right from 1st stage to 5th instar stage. Gold nano treatment resulted in significant alterations in the percentage of fibroin and sericin proteins in the 5th instar as compared to that of control. At a 300 ppm dose of green nano gold the percentage of fibroin was 78.07, while sericin decreased from 39.46 (control) to 21.92. It was observed that the green gold nanomaterials have the ability to not only alter the fibroin protein but also enhance the cocoon and silk traits. The aim of this study was to investigate the effect of extra foliation of mulberry leaves with G-GNPs extracted from A. cepa on larval duration, mature silk gland weight, pupal weight, cocoon weight, cocoon shell weight, fibroin and sericins contents, etc. Moreover, the enhanced production of fibroin will explore a new venture in bioengineering and also in biomedical field.  相似文献   
5.
Wireless sensor networks (WSNs) are frequently employed in the agriculture field to improve the quality and crop yield. The WSN might reduce the quality of the communication link because of the absorption, dispersion, and attenuation through the leaves of plants. Therefore, estimating the path loss due to signal attenuation before WSN deployment is crucial for the smooth operation of the network. In this research paper, three innovative path loss models are defined based on the MATLAB curve fitting tool: polynomial water cycle (PWC), exponential water cycle (EWC), and Gaussian water cycle (GWC) algorithm. Here, the path loss between the router node and the coordinator node is modeled on the basis of the received signal strength indicator (RSSI) and time of arrival (TOA) measurements in a sugarcane field. The correlation coefficient between the RSSI measurement and the distance must be increased to create a precise path loss model. This paper integrates the exponential, polynomial, and Gaussian functions with the water cycle algorithm (WCA) to evaluate the optimal coefficients that would lead to precise path loss models. The performance of the proposed models that determines the optimum linear fit between RSSI and distance is validated using the correction coefficient R 2 . The results show that the proposed path loss model is superior to existing path loss models. The correlation coefficient R 2 of the proposed EWC model is 0.9993, whereas the existing PE-PSO, LNSM, and PSO-Exponential models yield 0.98, 0.87, and 0.93, respectively. Also, the proposed models attain the best mean absolute error (MAE) of 0.2187, 0.2951, and 0.3457 dBm for EWC, PWC, and GWC algorithms, respectively.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号