首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2480篇
  免费   209篇
  国内免费   4篇
电工技术   43篇
综合类   4篇
化学工业   603篇
金属工艺   66篇
机械仪表   63篇
建筑科学   35篇
矿业工程   6篇
能源动力   38篇
轻工业   410篇
水利工程   14篇
石油天然气   19篇
无线电   250篇
一般工业技术   391篇
冶金工业   438篇
原子能技术   25篇
自动化技术   288篇
  2023年   18篇
  2022年   72篇
  2021年   98篇
  2020年   69篇
  2019年   80篇
  2018年   80篇
  2017年   93篇
  2016年   92篇
  2015年   73篇
  2014年   126篇
  2013年   139篇
  2012年   121篇
  2011年   157篇
  2010年   94篇
  2009年   107篇
  2008年   82篇
  2007年   135篇
  2006年   81篇
  2005年   67篇
  2004年   59篇
  2003年   46篇
  2002年   46篇
  2001年   37篇
  2000年   29篇
  1999年   41篇
  1998年   144篇
  1997年   97篇
  1996年   60篇
  1995年   41篇
  1994年   38篇
  1993年   38篇
  1992年   26篇
  1991年   18篇
  1990年   12篇
  1989年   16篇
  1988年   19篇
  1987年   22篇
  1986年   11篇
  1985年   8篇
  1984年   9篇
  1983年   12篇
  1982年   8篇
  1981年   11篇
  1980年   11篇
  1979年   6篇
  1978年   6篇
  1977年   7篇
  1976年   13篇
  1972年   4篇
  1941年   2篇
排序方式: 共有2693条查询结果,搜索用时 203 毫秒
1.
2.
3.
Studies related to biomaterials that stimulate the repair of living tissue have increased considerably, improving the quality of many people's lives that require surgery due to traumatic accidents, bone diseases, bone defects, and reconstructions. Among these biomaterials, bioceramics and bioactive glasses (BGs) have proved to be suitable for coating materials, cement, scaffolds, and nanoparticles, once they present good biocompatibility and degradability, able to generate osteoconduction on the surrounding tissue. However, the role of biomaterials in hard tissue engineering is not restricted to a structural replacement or for guiding tissue regeneration. Nowadays, it is expected that biomaterials develop a multifunctional role when implanted, orchestrating the process of tissue regeneration and providing to the body the capacity to heal itself. In this way, the incorporation of specific metal ions in bioceramics and BGs structure, including magnesium, silver, strontium, lithium, copper, iron, zinc, cobalt, and manganese are currently receiving enhanced interest as biomaterials for biomedical applications. When an ion is incorporated into the bioceramic structure, a new category of material is created, which has several unique properties that overcome the disadvantages of primitive material and favors its use in different biomedical applications. The doping can enhance handling properties, angiogenic and osteogenic performance, and antimicrobial activity. Therefore, this review aims to summarize the effect of selected metal ion dopants into bioceramics and silicate-based BGs in bone tissue engineering. Furthermore, new applications for doped bioceramics and BGs are highlighted, including cancer treatment and drug delivery.  相似文献   
4.
Traditional West African pearl millet couscous products are popular; however, their preparation is laborious, time-consuming and energy-demanding, involving agglomeration, steaming, drying and sieving steps. In this study, a process was developed to produce millet couscous using a high pressure, high temperature and low-cost single-screw extruder. The innovation was to directly process the cooked low-moisture extrudate to a couscous product by drying and milling to the appropriate particle size (ranging between 1 and 2 mm). Throughput for the traditional process as prepared for commercial sale is 50 kg per day, but with the same amount of labour, the extrusion process yields ~350 kg per day. A consumer sensory study held in Niamey (Niger) showed that the extruded millet couscous was comparable to traditional couscous, though this was dependent on selection of the proper millet variety. This novel extrusion process could stimulate small- to medium-scale manufacturing of couscous and couscous-type products in West Africa.  相似文献   
5.
6.
Vertical arrays of nanostructures (NSs) are emerging as promising platforms for probing and manipulating live mammalian cells. The broad range of applications requires different types of interfaces, but cell settling on NS arrays is not yet fully controlled and understood. Cells are both seen to deform completely into NS arrays and to stay suspended like tiny fakirs, which have hitherto been explained with differences in NS spacing or density. Here, a better understanding of this phenomenon is provided by using a model that takes into account the extreme membrane deformation needed for a cell to settle into a NS array. It is shown that, in addition to the NS density, cell settling depends strongly on the dimensions of the single NS, and that the settling can be predicted for a given NS array geometry. The predictive power of the model is confirmed by experiments and good agreement with cases from the literature. Furthermore, the influence of cell‐related parameters is evaluated theoretically and a generic method of tuning cell settling through surface coating is demonstrated experimentally. These findings allow a more rational design of NS arrays for the numerous exciting biological applications where the mode of cell settling is crucial.  相似文献   
7.
8.
Neat poly (lactic acid) (PLA) and PLA/cassava bagasse (CB) composites were used to produce seedling tubes by extrusion and injection molding. The tubes were buried in simulated soil, and their biodegradation was investigated by weight loss, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). After 180 days, the composites' biodegradation was higher than neat PLA material, and the higher the CB content, the higher the biodegradation, which caused fissures and voids in the material. The biodegradation of PLA/CB composites increased the phosphorus content in the soil after 180 days. Composites of PLA with CB, an abundant agro-industrial residue in Brazil, are promising because they can reduce the environmental impact due to CB's proper destination, and the composites' costs and biodegradation are faster than pure PLA material. Both the faster biodegradation of the tube and the higher P content are advantageous for seedling tubes.  相似文献   
9.
High magnetic fields are one of the most powerful tools available to scientists for the study, modification and control of matter. This includes the knowledge on correlations effects, interaction mechanisms, structural information and understanding of mesoscopic effects. In this context, a review of recent scientific achievements at the Grenoble High Magnetic Laboratory is given to illustrate, on specific examples, the power of the Magnetic Field probe.  相似文献   
10.
Two patients exhibited chronic, slightly asymmetric weakness and wasting with fasciculations of the upper limb and hand muscles. Motor nerve conduction studies showed features of multifocal conduction block in nerve segments other than those usually involved in entrapment syndromes. The F wave was markedly delayed in the median and ulnar nerves. Transcranial cortical and cervical root magnetic stimulation showed bilaterally delayed thenar responses with normal central conduction time. Needle electromyography demonstrated a chronic denervation pattern with large polyphasic motor units in several muscles of the upper limbs. Sensory symptoms were mild and limited to paresthesias in the fingertips. Sensory nerve conduction velocity and sensory nerve action potential amplitudes were normal in elbow-to-wrist and wrist-to-finger segments of the median and ulnar nerves, but there was a delayed cortical response and unrecognizable Erb's point and cervical responses in the somatosensory evoked potentials to median nerve electrical stimulation. Electrophysiologic examination was normal in most nerves of the lower limbs. These two patients, meeting clinical and electrophysiologic criteria of multifocal neuropathy with conduction block, demonstrate that sensory fibers may also be involved in this syndrome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号