首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   3篇
化学工业   16篇
金属工艺   1篇
建筑科学   1篇
矿业工程   1篇
轻工业   2篇
无线电   11篇
一般工业技术   25篇
冶金工业   32篇
自动化技术   31篇
  2022年   5篇
  2021年   6篇
  2019年   1篇
  2018年   5篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   4篇
  2008年   4篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1997年   3篇
  1996年   6篇
  1995年   6篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
  1991年   5篇
  1990年   5篇
  1989年   4篇
  1988年   5篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1980年   2篇
  1978年   4篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1969年   1篇
排序方式: 共有120条查询结果,搜索用时 15 毫秒
1.
In this work, the curing of «ED-20» epoxy resin with partially siloxy-substituted aluminum, iron, and zirconium siloxanes that we obtained previously was studied. The initial content of a metallosiloxane in the compositions was 5–50 wt% with respect to the resin. In all the cases, thermal curing was used to obtain a series of samples in the form of solid homogeneous materials. The fact of the epoxy ring opening in the resin was confirmed by IR spectroscopy. The catalytic properties of the metal atom in a metallosiloxane were found to affect the curing process. The samples demonstrate rather a high resistance to thermooxidative destruction, and in most cases, their glass transition temperatures are lower than those obtained upon standard curing of «ED-20» resin with triethylenetetramine. Partially siloxy-substituted metalloalkoxysiloxanes can be efficient agents for curing and formation of a hybrid material based on epoxy resins.  相似文献   
2.
Advanced biocompatible and robust platforms equipped with diverse properties are highly required in biomedical imaging applications for the early detection of atherosclerotic vascular disease and cancers. Designing nanohybrids composed of noble metals and fluorescent materials is a new way to perform multimodal imaging to overcome the limitations of single-modality counterparts. Herein, we propose the novel design of a multimodal contrast agent; namely, an enhanced nanohybrid comprising gold nanorods (GNRs) and carbon dots (CDs) with silica (SiO2) as a bridge. The nanohybrid (GNR@SiO2@CD) construction is based on covalent bonding between SiO2 and the silane-functionalized CDs, which links the GNRs with the CDs to form typical core–shell units. The novel structure not only retains and even highly improves the optical properties of the GNRs and CDs, but also possesses superior imaging performance in both diffusion reflection (DR) and fluorescence lifetime imaging microscopy (FLIM) measurements compared with bare GNRs or fluorescence dyes and CDs. The superior bioimaging properties of the GNR@SiO2@CD nanohybrids were successfully exploited for in vitro DR and FLIM measurements of macrophages within tissue-like phantoms, paving the way toward a theranostic contrast agent for atherosclerosis and cancer.
  相似文献   
3.
The focus of this paper is to present the results of our investigation and evaluation of various shared-memory parallelizations of the data association problem in multitarget tracking. The multitarget tracking algorithm developed was for a sparse air traffic surveillance problem, and is based on an Interacting Multiple Model (IMM) state estimator embedded into the (2D) assignment framework. The IMM estimator imposes a computational burden in terms of both space and time complexity, since more than one filter model is used to calculate state estimates, covariances, and likelihood functions. In fact, contrary to conventional wisdom, for sparse multitarget tracking problems, we show that the assignment (or data association) problem is not the major computational bottleneck. Instead, the interface to the assignment problem, namely, computing the rather numerous gating tests and IMM state estimates, covariance calculations, and likelihood function evaluations (used as cost coefficients in the assignment problem), is the major source of the workload. Using a measurement database based on two FAA air traffic control radars, we show that a “coarse-grained” (dynamic) parallelization across the numerous tracks found in a multitarget tracking problem is robust, scalable, and demonstrates superior computational performance to previously proposed “fine-grained” (static) parallelizations within the IMM  相似文献   
4.
The problem of the existence of redundancy in the data in a recursive estimation problem is investigated. Given a certain data rate, should the estimator be run at the same rate? It is shown that under certain conditions there is redundancy in the data and the estimator can be run at a lower rate using compressed data with practically the same performance as when no data compression is utilized. It is also pointed out that, although at the higher rate there is redundancy in the data, the performance deteriorates noticeably when the data rate is lowered. Conditions for the existence of redundancy in the data and the procedure to remove it are presented. The procedure to compress the data is obtained such as to preserve the information in the sense of Fisher. The effect of data compression is a reduction in the computation requirements by a factor equal to the compression ratio. Such a reduction might be important in real-time applications in which the computing power is limited or too expensive. The application of this technique to the tracking of a reentry vehicle with a linearized filter is discussed in more detail and simulation results are presented.  相似文献   
5.
A thermal oxidation process of diamond films grown by chemical vapor deposition (CVD) has been studied. The oxidation was realized via heating of the CVD films in air. Pristine and oxidized CVD diamond films were analyzed with Raman spectroscopy and scanning electron microscopy (SEM) techniques. Raman spectroscopy revealed substantial changes in the polycrystalline diamond film composition induced by oxidation. A selective oxidation of disordered carbon and small size diamond crystallites was obtained at appropriate temperatures. A model explaining the formation and oxidation of the CVD diamond films containing the micrometer single diamond cores surrounded by the nanocrystalline diamond and disordered carbon has been proposed on the basis of the obtained results.  相似文献   
6.
The solid state crystallization in drawn thermoplastic polyimide films is studied as a function of draw ratio (DR) under the effect of vapor grown carbon fiber nanoinclusions. The nucleating effect of the nanoinclusions coupled with the orientation effect of drawing generates a unique orientated layered lamellar structure, characteristic of smectic‐like mesophase. The degree of draw induced orientated crystallization increases with the content of nanoinclusions and with the DR, and is reflected in the mechanical behavior of the film. Generally, the Young's modulus and the yield point of the drawn crystalline films in the drawing direction are significantly higher compared with the noncrystalline counterparts. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers  相似文献   
7.
8.
Alginates are natural polymers widely used in the food industry because of their biocompatible, biodegradable character, nontoxicity and easy availability. The bioadhesive character of alginates makes them useful in the pharmaceutical industry as well. The application areas of sodium alginate-based drug delivery systems are many and these systems can be formulated as gels, matrices, membranes, nanospheres, microspheres, etc. Worldwide researchers are exploring possible applications of alginates as coating material, preparation of controlled-release drug delivery systems such as microspheres, beads, pellets, gels, fibers, membranes, etc. In the present review, such applications of alginates are discussed.  相似文献   
9.
The ability to monitor protein aggregation at the molecular level is critical for progress in many areas of life sciences ranging from understanding mechanisms of amyloidosis and etiology of conformational diseases to development of safe and efficient biopharmaceutical products. Despite the spectacular progress in understanding the mechanisms of protein aggregation in recent years, many aspects of the aggregating proteins behavior remain unclear because of the extreme difficulty in tracking evolution of these notoriously complex and heterogeneous systems. Here, we introduce a mass spectrometry-based methodology that allows the early stages of heat-induced aggregation to be studied by monitoring both conformational changes and formation of oligomers as a function of temperature. The new approach allows biopolymer behavior (both reversible and irreversible processes) to be monitored in a wide temperature range. Validation of the methodology is carried out by comparing temperature profiles of model proteins and nucleic acids deduced from mass spectrometry measurements and differential scanning calorimetry. Application of the methodology to study heat-induced aggregation of human glucocerebrosidase unequivocally links loss of conformational fidelity to formation of soluble oligomers, which serve as precursors to aggregation.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号