首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4344篇
  免费   339篇
  国内免费   6篇
电工技术   72篇
综合类   3篇
化学工业   1400篇
金属工艺   85篇
机械仪表   128篇
建筑科学   145篇
矿业工程   8篇
能源动力   152篇
轻工业   844篇
水利工程   39篇
石油天然气   25篇
无线电   231篇
一般工业技术   734篇
冶金工业   441篇
原子能技术   21篇
自动化技术   361篇
  2024年   15篇
  2023年   51篇
  2022年   221篇
  2021年   239篇
  2020年   145篇
  2019年   153篇
  2018年   162篇
  2017年   180篇
  2016年   175篇
  2015年   129篇
  2014年   200篇
  2013年   311篇
  2012年   280篇
  2011年   291篇
  2010年   228篇
  2009年   232篇
  2008年   197篇
  2007年   203篇
  2006年   156篇
  2005年   115篇
  2004年   92篇
  2003年   98篇
  2002年   76篇
  2001年   60篇
  2000年   44篇
  1999年   52篇
  1998年   113篇
  1997年   79篇
  1996年   58篇
  1995年   44篇
  1994年   33篇
  1993年   38篇
  1992年   25篇
  1991年   19篇
  1990年   25篇
  1989年   18篇
  1988年   30篇
  1987年   13篇
  1986年   15篇
  1985年   15篇
  1984年   6篇
  1983年   5篇
  1982年   4篇
  1981年   3篇
  1980年   7篇
  1979年   5篇
  1977年   5篇
  1976年   11篇
  1974年   3篇
  1969年   2篇
排序方式: 共有4689条查询结果,搜索用时 15 毫秒
1.
2.
This work presents the dielectric properties of YNbO4 (YNO)–TiO2 composites in the microwave range. X-ray diffraction analysis demonstrates that the addition of TiO2 to YNO results in the formation of a Y(Nb0.5Ti0.5)2O6 phase. In the microwave range, the values of permittivity and dielectric loss did not present major changes with the increment of TiO2. Moreover, the addition of TiO2 results in an improvement in the thermal stability of YNO, with YNO63 demonstrating a resonant frequency of ?8.96 ppm.°C?1. We utilised numerical simulations to evaluate the behaviour of these materials as dielectric resonator antennae and it is found that they exhibit a reflection coefficient below ?10 dB at the resonant frequency, with a realised gain of 4.94 – 5.76 dBi, a bandwidth of 665–1050 MHz and a radiation efficiency above 84%. Our results indicate that YNO–TiO2 composites are interesting candidates for microwave operating devices.  相似文献   
3.
Studies related to biomaterials that stimulate the repair of living tissue have increased considerably, improving the quality of many people's lives that require surgery due to traumatic accidents, bone diseases, bone defects, and reconstructions. Among these biomaterials, bioceramics and bioactive glasses (BGs) have proved to be suitable for coating materials, cement, scaffolds, and nanoparticles, once they present good biocompatibility and degradability, able to generate osteoconduction on the surrounding tissue. However, the role of biomaterials in hard tissue engineering is not restricted to a structural replacement or for guiding tissue regeneration. Nowadays, it is expected that biomaterials develop a multifunctional role when implanted, orchestrating the process of tissue regeneration and providing to the body the capacity to heal itself. In this way, the incorporation of specific metal ions in bioceramics and BGs structure, including magnesium, silver, strontium, lithium, copper, iron, zinc, cobalt, and manganese are currently receiving enhanced interest as biomaterials for biomedical applications. When an ion is incorporated into the bioceramic structure, a new category of material is created, which has several unique properties that overcome the disadvantages of primitive material and favors its use in different biomedical applications. The doping can enhance handling properties, angiogenic and osteogenic performance, and antimicrobial activity. Therefore, this review aims to summarize the effect of selected metal ion dopants into bioceramics and silicate-based BGs in bone tissue engineering. Furthermore, new applications for doped bioceramics and BGs are highlighted, including cancer treatment and drug delivery.  相似文献   
4.
5.
6.
7.
8.
9.
10.
Radiation therapy is a technology-driven cancer treatment modality that has experienced significant advances over the last decades, due to multidisciplinary contributions that include engineering and computing. Recent technological developments allow the use of noncoplanar volumetric modulated arc therapy (VMAT), one of the most recent photon treatment techniques, in clinical practice. In this work, an automated noncoplanar arc trajectory optimization framework designed in two modular phases is presented. First, a noncoplanar beam angle optimization algorithm is used to obtain a set of noncoplanar irradiation directions. Then, anchored in these directions, an optimization strategy is proposed to compute an optimal arc trajectory. The computational experiments considered a pool of twelve difficult head-and-neck tumor cases. It was possible to observe that, for some of these cases, the optimized noncoplanar arc trajectories led to significant treatment planning quality improvements, when compared with coplanar VMAT treatment plans. Although these experiments were done in a research environment treatment planning software (matRad), the conclusions can be of interest for a clinical setting: automated procedures can simplify the current treatment workflow, produce high-quality treatment plans, making better use of human resources and allowing for unbiased comparisons between different treatment techniques.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号