首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   5篇
电工技术   7篇
化学工业   28篇
金属工艺   1篇
机械仪表   5篇
建筑科学   1篇
能源动力   1篇
轻工业   22篇
水利工程   1篇
无线电   93篇
一般工业技术   14篇
冶金工业   18篇
自动化技术   7篇
  2023年   5篇
  2022年   4篇
  2021年   3篇
  2020年   1篇
  2019年   4篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2013年   8篇
  2012年   5篇
  2011年   8篇
  2010年   7篇
  2009年   9篇
  2008年   13篇
  2007年   7篇
  2006年   8篇
  2005年   6篇
  2004年   5篇
  2003年   4篇
  2002年   6篇
  2001年   6篇
  2000年   6篇
  1999年   6篇
  1998年   5篇
  1997年   5篇
  1996年   9篇
  1995年   4篇
  1994年   4篇
  1993年   7篇
  1992年   6篇
  1991年   3篇
  1990年   1篇
  1989年   5篇
  1988年   5篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1977年   1篇
  1976年   1篇
排序方式: 共有198条查询结果,搜索用时 0 毫秒
1.
Impact ionization is a major limiting factor to the maximum operating voltage of InGaAs-based, high-speed transistors. In this work, data on the positive temperature dependence of the electron impact ionization coefficient αn in In0.53Ga0.47As at medium-low electric fields are reported for the first time. The increase of αn with temperature is opposite to the behavior normally observed in most semiconductors. This anomalous behavior implies the onset of a positive feedback between power dissipation and avalanche generation which may adversely affect the power handling capability of In0.53Ga 0.47As-based devices, and which should be taken into account in device thermal modeling. In the experimental procedure, based on the measurement of the multiplication factor M-1 in npn In0.53Ga 0.47As/InP Heterojunction Bipolar Transistors (HBT), particular care has been taken in order to rule out possible spurious, temperature-dependent contributions to the measured multiplication current  相似文献   
2.
Pre-metal-deposition reactive ion etching (RIE) was performed on an Al0.3Ga0.7N/AlN/GaN heterostructure in order to improve the metal-to-semiconductor contact resistance. An optimum AlGaN thickness for minimizing contact resistance was determined. An initial decrease in contact resistance with etching time was explained in terms of removal of an oxide surface layer and/or by an increase in tunnelling current with the decrease of the AlGaN thickness. The presence of a dissimilar surface layer was confirmed by an initial nonuniform etch depth rate. An increase in contact resistance for deeper etches was experienced. The increase was related to depletion of the two-dimensional (2-D) electron gas (2-DEG) under the ohmics. Etch depths were measured by atomic force microscopy (AFM). The contact resistance decreased from about 0.45 Ωmm for unetched ohmics to a minimum of 0.27 Ωmm for 70 Å etched ohmics. The initial thickness of the AlGaN layer was 250 Å. The decrease in contact resistance, without excessive complications on device processing, supports RIE etching as a viable solution to improve ohmic contact resistance in AlGaN/GaN HEMTs  相似文献   
3.
The impact of process fluctuations on the variability of deep submicron (DSM) very large scale integration (VLSI) circuit performances is investigated in this paper. In particular, we show that as process dimensions stale down in the subhalfmicron region, the relative weight of process variability tends to increase, thus wearing down a non negligible portion of the benefits that are expected from minimum feature size scaling. We still show that in order to better exploit the advance of process technology, it is essential to adopt a realistic approach to worst case modeling [assigned probability technique (APT)]. The application of the APT technique to different test circuits designed in 0.35, 0.25, and 0.18 μm CMOS technologies with a power supply ranging from 3.3 V down to 1 V will demonstrate how the manufacturability of DSM designs is going to be a vital factor for the successful implementation of high-performance or low-power systems in 0.18 μm and lesser technologies  相似文献   
4.
2.1 A/mm current density AlGaN/GaN HEMT   总被引:10,自引:0,他引:10  
The electrical performance of high current density AlGaN/GaN HEMTs is reported. 2 /spl times/ 75 /spl mu/m /spl times/ 0.7 /spl mu/m devices grown on sapphire substrates showed current densities up to 2.1 A/mm under 200 ns pulse condition. RF power measurements at 8 GHz and V/sub DS/=15 V exhibited a saturated output power of 3.66 W/mm with a 47.8% peak PAE.  相似文献   
5.
An extensive characterization of the on-state breakdown characteristics of GaAs based MESFETs and HEMTs has been carried out by means of DC and pulsed measurements and of circuit simulations. A computer-controlled, three-terminal Transmission Line Pulse (TLP) system with 50-100 ns pulse width and sub-ns risetime has been developed, which allows automated pulsed measurements of device I-V characteristics. The TLP system has been adopted for nondestructive measurements of the on-state breakdown characteristics of GaAs MESFETs and HEMTs up to unprecedented values of gate current density (I/sub G//W=30 mA/mm has been reached), in strong avalanche conditions. The device behavior in strong avalanche conditions is dominated by a parasitic bipolar effect (PBE) similarly to SOI and bulk Si MOSFETs. By taking into account this and other parasitic effects, an equivalent circuit model, suitable for SPICE simulations has been developed. The proposed model is capable of predicting the exact behavior of the gate and drain currents in both weak and strong avalanche conditions.  相似文献   
6.
The authors point out that when a triangular shape for the electric field in the base-collector space-charge region of an n-p-n Si BJT (bipolar junction transistor) is assumed, the electron mean energy can be calculated analytically from a simplified energy-balance equation. On this basis a nonlocal-impact-ionization model, suitable for computer-aided circuit simulation, has been obtained and used to calculate the output characteristics at constant emitter-base voltage (grounded base) of advanced devices. Provided the experimental bias-dependent value of the base parasitic resistance is accounted for in the device model, the base-collector voltage at which impact-ionization-induced snap-back occurs can be accurately predicted  相似文献   
7.
We present measurements on impact ionization effects, real space transfer of holes and electrons, and light emission occurring in n-channel InAlAs/InGaGs heterostructure Field-Effect Transistors based on InP operated at high electric fields and at different temperatures. The channel electrons heated by the lateral electric field give rise to impact ionization and light emission. By comparing the electrical characteristics and the integrated light intensity in different energy ranges and at different temperatures, we were able to identify two main different light emission mechanisms: conduction to conduction-band transitions for low energy photons and conduction to valence-band transitions for high energy photons. The correlation between the gate current and the light intensity allowed us to separately evaluate the electron and hole components of the gate current  相似文献   
8.
The effects of direct-current (DC) stress on GaN high-electron-mobility transistors (HEMTs) are investigated by means of numerical simulations, by which the creation of an acceptor trap in the AlGaN barrier layer was correlated to the observed experimental degradation. An increase in the trap concentration induces a worsening of the saturated current I DSS, transconductance g m, and output conductance g O. An increase in the length of the trapping region induces a degradation of I DSS and g m, but can reduce g O. Analysis of scattering parameters in the saturation region shows that the cutoff frequency f T matches the trend of g m.  相似文献   
9.
Large decreases in the drain current in the linear and low Vds region followed by a “kink” in the output Id-Vds characteristics have been found after hot electron stress test in AlGaAs/InGaAs/GaAs power pseudomorphic HEMT's. Decrease in the transconductance measured in linear region, increase in the drain parasitic resistance and trasconductance frequency dispersion have also been observed and attributed to the generation of electron traps in the gate-to-drain access region.  相似文献   
10.
A study of InP based HEMTs implemented with different process options will be reported. It will be demonstrated that devices with an InP etch stopper layer or with a narrow lateral gate recess region do not present any kink effect, neither any transconductance frequency dispersion, gm(f) and a stable behavior with respect to hot electron aging is observed. The opposite occurs in devices without the InP etch stopper layer and a wide lateral gate recess region. The data presented confirm the effectiveness of an InP passivating layer in improving the reliability of advanced InP-HEMTs, and point out at the free InAlAs surface as responsible for the observed instabilities (kink effects, gm(f) dispersion).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号