首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学工业   2篇
轻工业   1篇
一般工业技术   1篇
自动化技术   4篇
  2016年   2篇
  2014年   3篇
  2012年   1篇
  2010年   1篇
  2006年   1篇
排序方式: 共有8条查询结果,搜索用时 250 毫秒
1
1.
In the present study, microparticles composed of polymethacrylic acid‐chitosan (PMAA‐CS) were prepared by a novel interionic gelation method. Free‐radical polymerization of methacrylic acid was carried out in the presence of CS, using a water‐soluble initiator, and application of these microparticles toward oral insulin delivery was evaluated. Microparticles obtained were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) studies. From SEM studies, it was observed that microparticles had an aggregated morphology with size ~20 μm, while FTIR confirmed the presence of ionic interaction between PMAA and CS chains. Protein loading was done by diffusion filling method, and from in vitro release study, it was observed that insulin‐loaded microparticles displayed a pH depended release profile at alkaline/acidic pH. Microparticles exhibited sustained release of insulin for 3–4 h at neutral pH, and enzyme linked immunosorbent assay (ELISA) proved that encapsulated protein maintained 100% biological activity at neutral pH. Preliminary study suggests that these microparticles can serve as good candidate for oral protein delivery. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 506–512, 2006  相似文献   
2.
Separation and sorting of micron-sized particles has great importance in diagnostics, chemical and biological analyses, food and chemical processing and environmental assessment. By employing the unique characteristics of microscale flow phenomena, various techniques have been established for fast and accurate separation and sorting of microparticles in a continuous manner. The advancements in microfluidics enable sorting technologies that combine the benefits of continuous operation with small-sized scale suitable for manipulation and probing of individual particles or cells. Microfluidic sorting platforms require smaller sample volume, which has several benefits in terms of reduced cost of reagents, analysis time and less invasiveness to patients for sample extraction. Additionally, smaller size of device together with lower fabrication cost allows massive parallelization, which makes high-throughput sorting possible. Both passive and active separation and sorting techniques have been reported in literature. Passive techniques utilize the interaction between particles, flow field and the channel structure and do not require external fields. On the other hand, active techniques make use of external fields in various forms but offer better performance. This paper provides an extensive review of various passive and active separation techniques including basic theories and experimental details. The working principles are explained in detail, and performances of the devices are discussed.  相似文献   
3.
In the present study Laportea interrupta was analysed for nutritional, antioxidant, and antipyretic properties. Leaves contained significant amount of carbohydrates (19.80 g/100 g), proteins (31.30 g/100 g), starch (15.40 g/100 g), essential amino acids, and minerals. Ethanol extracts of flowers and roots revealed high total phenolic (46.35 mg gallic acid equivalents/g of extract) and flavonoid contents (96.67mg rutin equivalents/g of extract) respectively. Antioxidant assays showed that ethanol root extract possessed a strong 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity (IC50: 32.34 μg/mL), a 2,2′-azinobis(3-ethylbenzothiazoline-6-sulphonic acid) radical cation scavenging activity (1,072.57 μM trolox equivalents/g of extract), and a ferric reducing ability (9,456.01 mM Fe(II)/g of extract). Antipyretic studies revealed that ethanol root and leaf extracts at a dosage of 400 mg/kg in rats reduced the pyrexia induced by Brewer’s yeast by 68.0 and 57.4%, respectively. Thus, nutraceutical potential of L. interrupta and ethnobotanical information about its use as an antipyretic was confirmed.  相似文献   
4.
Single-file focusing and minimum interdistance of micron-size objects in a sample is a prerequisite for accurate flow cytometry measurements. Here, we report analytical models for predicting the focused width of a sample stream b as a function of channel aspect ratio α, sheath-to-sample flow rate ratio f and viscosity ratio λ in both 2D and 3D focusing. We present another analytical model to predict spacing between an adjacent pair of objects in a focused sample stream as a function of sample concentration C, mobility ? of the objects in the prefocused and postfocused regions and flow rate ratio f in both 2D and 3D flow focusing. Numerical simulations are performed using Ansys Fluent VOF model to predict the width of sample stream in 2D and 3D hydrodynamic focusing for different sample-to-sheath viscosity ratios, aspect ratios and flow rate ratios. Experiments are performed on both planar and three-dimensional devices fabricated in PDMS to demonstrate focusing of sample stream and spacing of polystyrene beads in the unfocused and focused stream at different sample concentrations C. The predictions of the analytical model and simulations are compared with experimental data, and a good match is found (within 12 %). Further, mobility of objects is experimentally studied in 2D and 3D focusing, and the spread of the mobility data is used as tool for the demonstration of particle focusing in flow cytometer applications.  相似文献   
5.
T.H. Sajeesh 《Thin solid films》2010,518(15):4370-4374
SnS thin films were prepared using automated chemical spray pyrolysis (CSP) technique. Single-phase, p-type, stoichiometric, SnS films with direct band gap of 1.33 eV and having very high absorption coefficient (> 105/cm) were deposited at substrate temperature of 375 °C. The role of substrate temperature in determining the optoelectronic and structural properties of SnS films was established and concentration ratios of anionic and cationic precursor solutions were optimized. n-type SnS samples were also prepared using CSP technique at the same substrate temperature of 375 °C, which facilitates sequential deposition of SnS homojunction. A comprehensive analysis of both types of films was done using x-ray diffraction, energy dispersive x-ray analysis, scanning electron microscopy, atomic force microscopy, optical absorption and electrical measurements. Deposition temperatures required for growth of other binary sulfide phases of tin such as SnS2, Sn2S3 were also determined.  相似文献   
6.
The influence of (1.5 mg/mL) of N-acetylcysteine (NAC), a non-antibiotic, mucolytic agent, on the biofouling of a reverse osmosis (RO) membrane by a multi-species culture (four environmental strains) of biofilm forming bacteria was studied. NAC was found to considerably suppress the formation of the biofilm on the RO membrane. The inhibitory effect of NAC on biofilm formation was verified by image based studies. There was over a 70% reduction in biofilm surface coverage when grown in the presence of NAC. Similarly, the average thickness and total biomass content of the biofilm formed in presence of NAC were significantly less than those of the control. These results suggest that NAC could be a potential agent for the control of biofouling of a RO membrane. However, the chemical stability, potential toxicity and consistent performance of NAC in the field will have to be further investigated for optimization of its use on a field scale.  相似文献   
7.
This work presents theoretical, numerical and experimental investigations of electrokinetic transport and separation of droplets in a microchannel. A theoretical model is used to predict that, in case of micron-sized droplets transported by electro-osmotic flow, the drag force is dominant as compared to the dielectrophoretic force. Numerical simulations were performed to capture the transient electrokinetic motion of the droplets using a two-dimensional multi-physics model. The numerical model employs Navier–Stokes equations for the fluid flow and Laplace equation for the electric potential in an Arbitrary Lagrangian–Eulerian framework. A microfluidic chip was fabricated using micromilling followed by solvent-assisted bonding. Experiments were performed with oil-in-water droplets produced using a cross-junction structure and applying electric fields using two cylindrical electrodes located at both ends of a straight microchannel. Droplets of different sizes were produced by controlling the relative flow rates of the discrete and continuous phases and separated along the channel due to the competition between the hydrodynamic and electrical forces. The numerical predictions of the particle transport are in quantitative agreement with the experimental results. The work reported here can be useful for separation and probing of individual biological cells for lab-on-chip applications.  相似文献   
8.
We report the droplet generation behavior of a microfluidic droplet generator with a controllable deformable membrane wall using experiments and analytical model. The confinement at the droplet generation junction is controlled by using external pressure, which acts on the membrane, to generate droplets smaller than junction size (with other parameters fixed) and stable and monodispersed droplets even at higher capillary numbers. A non-dimensional parameter, i.e., controlling parameter K p, is used to represent the membrane deformation characteristics due to the external pressure. We investigate the effect of the controlled membrane deformation (in terms of K p), viscosity ratio λ and flow rate ratio r on the droplet size and mobility. A correlation is developed to predict droplet size in the controllable deformable microchannel in terms of the controlling parameter K p, viscosity ratio λ and flow rate ratio r. Due to the deflection of the membrane wall, we demonstrate that the transition from the stable dripping regime to the unstable jetting regime is delayed to a higher capillary number Ca (as compared to rigid droplet generators), thus pushing the high throughput limit. The droplet generator also enables generation of droplets of sizes smaller than the junction size by adjusting the controlling parameter.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号