首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
化学工业   6篇
金属工艺   2篇
机械仪表   2篇
轻工业   1篇
无线电   2篇
一般工业技术   2篇
  2021年   4篇
  2020年   3篇
  2019年   1篇
  2014年   5篇
  2011年   1篇
  2003年   1篇
排序方式: 共有15条查询结果,搜索用时 515 毫秒
1.
Gelatin (Gel)-based pH- and thermal-responsive magnetic hydrogels (MH-1 and MH-2) were designed and developed as novel drug delivery systems (DDSs) for cancer chemo/hyperthermia therapy. For this goal, Gel was functionalized with methacrylic anhydride (GelMA), and then copolymerized with (2-dimethylaminoethyl) methacrylate (DMAEMA) monomer in the presence of methacrylate-end capped magnetic nanoparticles (MNPs) as well as triethylene glycol dimethacrylate (TEGDMA; as crosslinker). Afterward, a thiol-end capped poly(N-isopropylacrylamide) (PNIPAAm-SH) was synthesized through an atom transfer radical polymerization technique, and then attached onto the hydrogel through “thiol-ene” click grafting. The preliminary performances of developed MHs for chemo/hyperthermia therapy of human breast cancer was investigated through the loading of doxorubicin hydrochloride (Dox) as an anticancer agent followed by cytotoxicity measurement of drug-loaded DDSs using MTT assay by both chemo- and chemo/hyperthermia-therapies. Owing to porous morphologies of the fabricated magnetic hydrogels according to scanning electron microscopy images and strong physicochemical interactions (e.g., hydrogen bonding) the drug loading capacities of the MH-1 and MH-2 were obtained as 72 ± 1.4 and 77 ± 1.8, respectively. The DDSs exhibited acceptable pH- and thermal-triggered drug release behaviors. The MTT assay results revealed that the combination of hyperthermia therapy and chemotherapy has synergic effect on the anticancer activities of the developed DDSs.  相似文献   
2.
Journal of Porous Materials - The development of theranostic nanostructures is one of the most advanced branches of pharmaceutical and medical sciences in the world today. Due to the unique...  相似文献   
3.
Directional response and roll stability characteristics of a partly filled tractor semi-trailer vehicle, with cylindrical tank, under different parameters and conditions are investigated. The effective parameters and conditions in the stability of a tractor semi-trailer carrying liquid can be considered as filled volume, kinematic viscosity of liquid cargo and vehicle steering input. The dynamic interaction of liquid cargo with the tractor semi-trailer vehicle is evaluated by integrating a dynamic slosh model of the partly filled tank with five-degrees-offreedom of a tractor semi-trailer tank model. The dynamic fluid slosh within the tank is modeled using three-dimensional Navier-Stokes equations, coupled with the volume-of-fluid equations and analyzed using FLUENT software. The coupled tank-vehicle model is subsequently analyzed to determine the roll stability characteristics for different conditions and maneuvers. The results show effects of parameter variations on roll stability of the vehicle carrying liquid and also fluid’s behavior in interaction with a vehicle’s dynamics.  相似文献   
4.
The main focus of the current study is the fabrication of a multifunctional nanohybrid based on graphene oxide (GO)/iron oxide/gold nanoparticles (NPs) as the combinatorial cancer treatment agent. Gold and iron oxide NPs formed on the GONPs via the in situ synthesis approach. The characterisations showed that gold and iron oxide NPs formed onto the GO. Cell toxicity assessment revealed that the fabricated nanohybrid exhibited negligible toxicity against MCF‐7 cells in low doses (<50 ppm). Temperature measurement showed a time and dose‐dependent heat elevation under the interaction of the nanohybrid with the radio frequency (RF) wave. The highest temperature was recorded using 200 ppm concentration nanohybrid during 40 min exposure. The combinatorial treatments demonstrated that the maximum cell death (average of 53%) was induced with the combination of the nanohybrid with RF waves and radiotherapy (RT). The mechanistic study using the flow cytometry technique illustrated that early apoptosis was the main underlying cell death. Moreover, the dose enhancement factor of 1.63 and 2.63 were obtained from RT and RF, respectively. To sum up, the authors’ findings indicated that the prepared nanohybrid could be considered as multifunctional and combinatorial cancer therapy agents.Inspec keywords: radiation therapy, toxicology, gold, biomedical materials, nanofabrication, nanoparticles, iron compounds, cancer, nanomedicine, cellular biophysics, tumours, graphene compounds, biothermicsOther keywords: graphene oxide nanohybrid, combinatorial cancer treatment agent, cell toxicity assessment, MCF‐7 cells, dose‐dependent heat elevation, multifunctional cancer therapy agents, thermoradiotherapy agent, graphene oxide‐iron oxide‐gold nanoparticles, temperature measurement, radiofrequency wave, flow cytometry, time 40.0 min, CO‐FeO‐Au  相似文献   
5.
This paper presents low-complexity detectors for a zero-IF Bluetooth receiver based on a simple phase-domain analog-to-digital converter. Measurements and simulations prove that the detectors' sensitivity lies close to an ideal coherent Gaussian frequency-shift keying (GFSK) detector.  相似文献   
6.
Sensor networks play an important role in making the dream of ubiquitous computing a reality. With a variety of applications, sensor networks have the potential to influence everyone's life in the near future. However, there are a number of issues in deployment and exploitation of these networks that must be dealt with for sensor network applications to realize such potential. Localization of the sensor nodes, which is the subject of this paper, is one of the basic problems that must be solved for sensor networks to be effectively used. This paper proposes a probabilistic support vector machine (SVM)‐based method to gain a fairly accurate localization of sensor nodes. As opposed to many existing methods, our method assumes almost no extra equipment on the sensor nodes. Our experiments demonstrate that the probabilistic SVM method (PSVM) provides a significant improvement over existing localization methods, particularly in sparse networks and rough environments. In addition, a post processing step for PSVM, called attractive/repulsive potential field localization, is proposed, which provides even more improvement on the accuracy of the sensor node locations.  相似文献   
7.
Applications like solid oxide fuel cells and sensors increasingly demand the possibility to braze ceramics to metals with a good resistance to high temperatures and oxidative atmospheres. Commonly used silver based active filler metals cannot fulfill these requirements, if application temperatures higher than 600°C occur. Au and Pd based active fillers are too expensive for many fields of use. As one possible solution nickel based active fillers were developed. Due to the high brazing temperatures and the low ductility of nickel based filler metals, the modification of standard nickel based filler metals were necessary to meet the requirements of above mentioned applications. To reduce thermally induced stresses wide brazing gaps and the addition of Al2O3 and WC particles to the filler metal were applied. In this study, the microstructure of the brazed joints and the thermo-chemical reactions between filler metal, active elements and WC particles were analyzed to understand the mechanism of the so called wide gap active brazing process. With regard to the behavior in typical application oxidation and thermal cycle tests were conducted as well as tensile tests.  相似文献   
8.
The main aim of the current study was to develop a chitosan hydrogel containing Aloe vera gel and Ethylenediaminetetraacetic acid (EDTA) as the wound healing materials. Chitosan with the concentration of (2% w/v) was prepared in AA (0.5%, v/v) and Tetrasodium EDTA (0.01% w/w) and AV (0.5% v/v) were added to the prepared polymer solution. As prepared solution was cross-linked by β-GP with the weight ratio of 1/6 w/w (1 chitosan and 6 β-GP). The characterization of the hydrogels showed that the hydrogels have porous structures and interconnected pores with the pores size range from 41.5 ± 14 to 48.3 ± 11 μm. The swelling and weight loss measurements of the hydrogels showed that the hydrogels could swell up to 240% of their initial weight during 8 h and loss 79.7 ± 3.5% of the initial weight during 14 days. The antibacterial studies depicted that the prepared Cs/tEDTA/AV hydrogel inhibited the growth of Staphylococcus aureus (the minimum inhibition concentration, MIC of 73 ± 4.8) and Pseudomonas aeruginosa (the MIC of 40 ± 7.9). Moreover, the prepared hydrogels were hemocompatible (Cs/tEDTA/AV: OD of 0.24 ± 0.30) and biocompatible (Cs/tEDTA/AV: OD of 0.38 ± 0.01). At the final stage, the wound healing assessments in the animal model revealed that the application of the prepared hydrogels effectively enhanced the wound healing process. In conclusion, the results confirmed the efficacy of the prepared hydrogels as the wound healing materials.  相似文献   
9.
ABSTRACT

Novel thermal- and pH-responsive hollow nanocapsules (HNCaps) were fabricated through the grafting of a thiol-end capped PNIPAAm-b-PAA by thiol-ene “click” reaction onto PMMA HNCaps. The lowest critical solution temperature (LCST) of the fabricated HNCaps was obtained as 38–40°C. The fabricated nanosystem was loaded with doxorubicin hydrochloride (Dox), and its drug loading and encapsulation efficiencies were obtained as 62 and 53%, respectively. The in vitro stimuli-responsive drug release behavior of the fabricated nanomedicine was investigated extensively. The anticancer activity of the drug-loaded HNCaps was evaluated using MTT assay against MCF7 cells. The results exhibited excellent potential of nanosystem as a drug delivery system (DDS) for cancer chemotherapy.  相似文献   
10.
High strength steels are desirable materials for use in automobile bodies in order to reduce vehicle weight and increase the safety of car passengers, but steel grades with high strength commonly show poor formability. Recently, steels with controlled microstructures and compositions are used to gain adequate strength after hot stamping while maintaining good formability during processing. In this study, microstructure evolutions and changes in mechanical properties of AISI 4140 steel sheets resulting from the hot stamping process at different austenitization temperatures were investigated. To determine the proper austenitization temperatures, the results were compared with those of the cold-worked and cold-worked plus quench-tempered specimens. Comparisons showed that the austenitization temperatures of 1000 and 1100 °C are proper for hot stamping of 3-mm-thick AISI 4140 steel sheets due to the resultant martensitic microstructure which led to the yield and ultimate tensile strength of 1.3 and 2.1 GPa, respectively. Such conditions resulted in more favorable simultaneous strength and elongation than those of hot-stamped conventional boron steels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号