首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
化学工业   14篇
  2007年   1篇
  2005年   1篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  1999年   3篇
  1997年   1篇
  1993年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
To produce low calorific value gas, Australian coal has been gasified with air and steam in a fluidized bed reactor (0.1 m-I.Dx1.6 m-high) at atmospheric pressure. The effects of fluidizing gas velocity (2–5 Uf/Umf), reaction temperature (750–900 °C), air/coal ratio (1.6-3.2), and steam/coal ratio (0.63–1.26) on gas composition, gas yield, gas calorific value of the product gas and carbon conversion have been determined. The calorific value and yield of the product gas, cold gas efficiency, and carbon conversion increase with increasing fluidization gas velocity and reaction temperature. With increasing air/coal ratio, carbon conversion, cold gas efficiency and yield of the product gas increase, but the calorific value of the product gas decreases. When steam/coal ratio is increased, cold gas efficiency, yield and calorific value of the product gas increase, but carbon conversion is little changed. Unburned carbon fraction of cyclone fine decreases with increasing fluidization gas velocity, reaction temperature and air/coal ratio, but is nearly constant with increasing steam/coal ratio. Overall carbon conversion decreases with increasing fluidization velocity and air/ coal ratio, but increases with increasing reaction temperature. The particle entrainment rate increases with increasing fluidization velocity, but decreases with increasing reaction temperature. This paper is dedicated to Professor Dong Sup Doh on the occasion of his retirement from Korea University.  相似文献   
2.
Adsorption of heavy metals by brewery biomass   总被引:5,自引:0,他引:5  
In this work, biosorption of lead, copper and cadmium by waste brewery yeast has been studied. The adsorption capacity for lead, copper and cadmium on the biomass increased with the increasing temperature and the maximum uptakes were 0.465 mmolPb/g (96.4 mg/g), 0.769 mmolCu/g (48.9 mg/g) and 0.127 mmolCd/g (14.3 mg/g) at 308 K. The Langmuir isotherm, favorable type, and the pseudo second-order kinetic model represent our experimental data very well. The heat of biosorption was evaluated from the Langmuir isotherm equation, and the biosorption of lead, copper and cadmium was endothermic reaction.  相似文献   
3.
The carbon in a waste filter for water purification may be a new source of energy. The char of waste filter carbon and the char of wood chip have been gasified with steam in a thermobalance reactor under atmospheric pressure. The effect of gasification temperature (700-850°C) and partial pressure of steam (0.3-0.9 atm) on the gasification rate has been investigated. Several gas-solid reaction models have been compared for their prediction ability of the gasification reaction behavior. The modified volumetric reaction model was used to evaluate kinetic data. The gasification rate of waste filter carbon has been compared with the rates of coal and wood chip biomass. The activation energies of filter carbon and wood chip were determined to be 89.1 and 171.4 kJ/mol, respectively. The apparent reaction rate equation for waste filter carbon has been presented.  相似文献   
4.
A modified three-phase model is proposed for batch drying of fine powders in an inert medium fluidized bed. The overall heat and mass transfer coefficients between the interstitial gas and solid phases have been determined by the proposed surface-stripping model in which the Biot number is a governing parameter. The effects of gas velocity, inlet gas temperature and mass ratio of starch to inert particles on the drying characteristics of starch in a 0.083 m ID × 0.80 m high medium fluidized bed have been determined. Based on the proposed model, the internal resistance of mass transfer at the powder is equal to the external resistance. The model predicts well the bed temperature, humidity of outlet gas, moisture content of solid particles, heat and mass transfer in an inert medium fluidized bed.  相似文献   
5.
Non-uniform flow behavior of fluidized solid particles in three-phase fluidized beds has been analyzed by adopting the stochastic method. More specifically, pressure fluctuation signals from three-phase fluidized beds (0.152 m ID x 2.5 m in height) have been analyzed by resorting to fractal and spectral analysis. Effects of gas flow rate (0.01-0.07 m/s), liquid flow rate (0.06-0.18 m/s) and particle size (0.001-0.006 m) on the characteristics of the Hurst exponent, spectral exponent and Shannon entropy of pressure fluctuations have been investigated. The Hurst exponent and spectral exponent of pressure fluctuations attained their local maxima with the variation of liquid flow rate. The Shannon entropy of pressure fluctuation data, however, attained its local minima with the variation of liquid flow rate. The flow transition of fluidized solid particles was detected conveniently by means of the variations of the Hurst exponent, spectral exponent and Shannon entropy of pressure fluctuations in the beds. The flow behavior resulting from multiphase contact in three-phase fluidized beds appeared to be persistent and can be characterized as a higher order deterministic chaos.  相似文献   
6.
The effects of orifice diameter in the draft tube, particle size, gas velocities and bed height on the circulation rate of solids and gas bypassing between the draft tube and annulus have been determined in an internally circulating fluidized bed (i.d., 0.3 m ; height, 2.5 m) with an orifice-type draft tube. A conical shape gas separator has been employed above the draft tube to facilitate the separation of gases from the two beds. The circulation rate of solids and the quantity of gas bypass from the annulus to draft tube show their minimums when the static bed height is around the bottom of the separator. The circulation rate of solids increases with an increase in orifice diameter in the draft tube. At fixed aeration to the annulus, gas bypassing from the draft tube to annulus sections decreases, whereas reverse gas bypassing from the annulus to the draft tube increases with increasing the inlet gas velocity to the draft tube. The obtained solids circulation rate has been correlated by a relationship developed for the cocurrent flow of gas and solid through the orifice.  相似文献   
7.
Australian coal loaded with a mixed catalyst of K2SO4+Ni(NO3)2 has been gasified with steam in a fluidized bed reactor of 0.1 m inside diameter at atmospheric pressure. The effects of gas velocity (2-5 Ug/Umf), reaction temperature (750-900 °C), air/coal ratio (1.6-3.2), and steam/coal ratio (0.63-1.26) on gas compositions, gas yield and gas calorific value of the product gas and carbon conversion have been determined. The product gas quality and carbon conversion can be greatly improved by applying the catalyst; they can also be enhanced by increasing gas velocity and temperature. Up to 31% of the catalytic increment in gas calorific value could be obtained at higher temperatures. In the experimental runs with variation of steam/coal ratio, the catalytic increments were 16-38% in gas calorific value, 14-57% in carbon conversion, 5-46% in gas yield, and 7-44% in cold gas efficiency. With increasing fluidization gas velocity and reaction temperature, the unburned carbon fraction of cyclone fine for catalytic gasification decreased 4-18% and 13-16%, respectively, compared to that for non-catalytic gasification. Presented at the Int’l Symp. on Chem. Eng. (Cheju, Feb. 8–10, 2001), dedicated to Prof. H. S. Chun on the occasion of his retirement from Korea University.  相似文献   
8.
Characteristics of temperature fluctuations and heat transfer coefficient have been investigated in the riser of a circulating fluidized bed (0.102 m ID and 4.0 m in height). Effects of gas velocity and solid circulation rate on the temperature fluctuations, suspension density and heat transfer coefficient between the immersed heater and the bed have been considered in the riser. To analyze the characteristics of temperature fluctuations at the wall of the riser, the phase space portrait and Kolmogorov entropy of the fluctuations have been obtained, and the relation between the temperature fluctuations and the heat transfer coefficient has been examined. It has been found that the heat transfer system becomes more complicated and irregular with decreasing gas velocity and increasing solid circulation rate or suspension density in the riser. The heat transfer coefficient and Kolmogorov entropy of the temperature fluctuations have decreased with increasing the superficial gas velocity, while they have increased with increasing the solid circulation rate or suspension density in the bed. The heat transfer coefficient has been well correlated in terms of the Kolmogorov entropy, suspension density as well as operating variables in the riser. This paper is dedicated to Professor Dong Sup Doh on the occasion of his retirement from Korea University.  相似文献   
9.
The effects of gas velocity (0.32 to 0.67 m/s), inlet gas temperature (25 to 100 °C) and the mass ratio of starch to inert particles (0.1 to 0.4) on the drying rate of starch in a 0.083 m-ID × 0.80 m-high inert medium fluidized bed were investigated. The drying mechanism in an inert medium fluidized bed can be classified into adhesion-dispersion, evaporation and disintegration steps. The drying rate increases with the increasing inlet gas temperature and velocity; the rates being about 10 times those reported for an agitated pan dryer. However, the drying rate decreases slightly as the mass ratio of starch to inert particles increases. Also, the drying rate exhibits a maximum at an optimum bed porosity. The drying rate data obtained in an inert medium fluidized bed have been correlated with the relevant dimensionless groups, i.e. Stefan and particle Reynolds numbers based on the theory of isotropic turbulence.  相似文献   
10.
In order to understand the effect of temperature on slug properties, the onset velocity of slugging, slug rising velocity and slug frequency have been measured by a differential pressure method in an electrically heated gas fluidized bed of 0.1 m i.d. and height of 1.97 m and, with respect to variations in gas velocity (Umf∼0.15 m/s) and temperature (25-400 °C). Air was used as fluidizing gas and fluid catalytic cracking (FCC) catalyst particle (Geldart's group-A particle, dp=0.071 mm, ρp=1600 kg/m3) as bed material. The minimum slugging velocity was found to increase a little with bed temperature. The qualitative change in minimum slugging velocity was found to agree with the inverse of minimum fluidizing velocity as temperature was varied. As the bed temperature increased, slug frequency was found to decrease a little, whereas slug rising velocity increased. A correlation between slug rising velocity and bed temperature was proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号