首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   5篇
电工技术   3篇
化学工业   55篇
金属工艺   7篇
机械仪表   6篇
建筑科学   2篇
能源动力   5篇
轻工业   22篇
无线电   4篇
一般工业技术   34篇
冶金工业   10篇
原子能技术   4篇
自动化技术   22篇
  2023年   3篇
  2022年   7篇
  2021年   15篇
  2020年   13篇
  2019年   14篇
  2018年   10篇
  2017年   15篇
  2016年   10篇
  2015年   5篇
  2014年   4篇
  2013年   9篇
  2012年   7篇
  2011年   10篇
  2010年   11篇
  2009年   8篇
  2008年   10篇
  2007年   5篇
  2006年   2篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  1998年   3篇
  1995年   2篇
  1993年   3篇
  1991年   1篇
  1990年   2篇
  1974年   1篇
排序方式: 共有174条查询结果,搜索用时 0 毫秒
1.
Tree index structures are crucial components in data management systems. Existing tree index structure are designed with the implicit assumption that the underlying external memory storage is the conventional magnetic hard disk drives. This assumption is going to be invalid soon, as flash memory storage is increasingly adopted as the main storage media in mobile devices, digital cameras, embedded sensors, and notebooks. Though it is direct and simple to port existing tree index structures on the flash memory storage, that direct approach does not consider the unique characteristics of flash memory, i.e., slow write operations, and erase-before-update property, which would result in a sub optimal performance. In this paper, we introduce FAST (i.e., Flash-Aware Search Trees) as a generic framework for flash-aware tree index structures. FAST distinguishes itself from all previous attempts of flash memory indexing in two aspects: (1) FAST is a generic framework that can be applied to a wide class of data partitioning tree structures including R-tree and its variants, and (2) FAST achieves both efficiency and durability of read and write flash operations through memory flushing and crash recovery techniques. Extensive experimental results, based on an actual implementation of FAST inside the GiST index structure in PostgreSQL, show that FAST achieves better performance than its competitors.  相似文献   
2.
The deep learning model encompasses a powerful learning ability that integrates the feature extraction, and classification method to improve accuracy. Convolutional Neural Networks (CNN) perform well in machine learning and image processing tasks like segmentation, classification, detection, identification, etc. The CNN models are still sensitive to noise and attack. The smallest change in training images as in an adversarial attack can greatly decrease the accuracy of the CNN model. This paper presents an alpha fusion attack analysis and generates defense against adversarial attacks. The proposed work is divided into three phases: firstly, an MLSTM-based CNN classification model is developed for classifying COVID-CT images. Secondly, an alpha fusion attack is generated to fool the classification model. The alpha fusion attack is tested in the last phase on a modified LSTM-based CNN (CNN-MLSTM) model and other pre-trained models. The results of CNN models show that the accuracy of these models dropped greatly after the alpha-fusion attack. The highest F1 score before the attack was achieved is 97.45 And after the attack lowest F1 score recorded is 22%. Results elucidate the performance in terms of accuracy, precision, F1 score and Recall.  相似文献   
3.
Neural Computing and Applications - In the present study, a novel application of backpropagated neurocomputing heuristics (BNCH) is presented for epidemic virus model that portrays the Stuxnet...  相似文献   
4.
We investigated the cerebral folate system in post-mortem brains and matched cerebrospinal fluid (CSF) samples from subjects with definite Alzheimer’s disease (AD) (n = 21) and neuropathologically normal brains (n = 21) using immunohistochemistry, Western blot and dot blot. In AD the CSF showed a significant decrease in 10-formyl tetrahydrofolate dehydrogenase (FDH), a critical folate binding protein and enzyme in the CSF, as well as in the main folate transporter, folate receptor alpha (FRα) and folate. In tissue, we found a switch in the pathway of folate supply to the cerebral cortex in AD compared to neurologically normal brains. FRα switched from entry through FDH-positive astrocytes in normal, to entry through glial fibrillary acidic protein (GFAP)-positive astrocytes in the AD cortex. Moreover, this switch correlated with an apparent change in metabolic direction to hypermethylation of neurons in AD. Our data suggest that the reduction in FDH in CSF prohibits FRα-folate entry via FDH-positive astrocytes and promotes entry through the GFAP pathway directly to neurons for hypermethylation. This data may explain some of the cognitive decline not attributable to the loss of neurons alone and presents a target for potential treatment.  相似文献   
5.
6.
New four‐component water reducible acrylic modified alkyd resins that are based on 1,3‐propanediol and contain different ratios of acrylic copolymer (AC) were synthesized by using a novel four‐stage fatty acid method. The final content of solids in the water reducible acrylic modified alkyd resins was 60% by weight. After the modified alkyd resin films were cured at 150°C for 1 h, it was observed that the use of AC as the modifier component had improved their physical and chemical surface coating properties and thermal behaviors. Experimental results show that the optimum AC ratio is 40% of the equivalent amount of AC to alkyd resin. Low‐volatile organic compounds (VOC) content water reducible acrylic modified alkyd resins yielded soft and flexible films with high chemical/thermal resistance, suitable for manufacturing of surface coating binders. POLYM. ENG. SCI., 56:947–954, 2016. © 2016 Society of Plastics Engineers  相似文献   
7.
In this work, the authors report a facile low‐temperature wet‐chemical route to prepare morphology‐tailored hierarchical structures (HS) of copper oxide. The preparation of copper oxide collides was carried out using varying concentrations of copper acetate and a reducing agent at a constant temperature of 50°C. The prepared HS of CuO were characterised by powdered X‐rays diffraction that indicates phase pure having monoclinic structures. The morphology was further confirmed by field‐emission scanning electron microscope. It reveals a difference in shape and size of copper oxide HS by changing the concentration of reactants. In order to evaluate the effect of H2 O2 on CuO NPs, the prepared CuO are modified by treatment with H2 O2. In general trend, CuOH2 O2 collide showed enhanced protein kinase inhibition, antibacterial (maximum zone 16.34 mm against Staphylococcus aureus) and antifungal activities in comparison to unmodified CuO collides. These results reveal that CuO HS exhibit antimicrobial properties and can be used as a potential candidate in pharmaceutical industries.Inspec keywords: molecular biophysics, antibacterial activity, X‐ray diffraction, microorganisms, copper compounds, nanofabrication, nanoparticles, narrow band gap semiconductors, field emission scanning electron microscopy, enzymes, nanomedicine, particle size, semiconductor growthOther keywords: unmodified CuO collides, low‐temperature synthesis, morphology‐tailored hierarchical structures, copper acetate, reducing agent, monoclinic structures, copper oxide HS, CuO NPs, Staphylococcus aureus, biological activity, copper oxide, powdered X‐ray diffraction, field‐emission scanning electron microscopy, facile low‐temperature wet‐chemical method, protein kinase inhibition, antibacterial activity, antifungal activity, antimicrobial properties, pharmaceutical industries, temperature 50.0 degC, CuO  相似文献   
8.
9.
The main purpose of this work is to show the ability of the TCS (task configuration system) to perform both the design and the operation optimization of power plants. The TCS is a module that permits to set the main task of each one of the equipments of the system and consequently setting how they respond to variable loads. In this work, the TCS was applied to a micro cogeneration plant of 60 kW in which both the electrical and the thermal loads were variable. Primarily, the design optimization of the nominal power of the equipments and of the TCS configuration was performed for the loads and electricity/fuel costs assumed in the design. After this operational optimizations in cases where the loads and electricity/fuel costs were doubled and then halved in relation to the standard case were performed. The results presented the TCS in a very robust way in most of the cases even the operational conditions being very different from the originally assumed. Based on the results, it is possible to defend the use of the TCS to decrease the risk of high initial investments made in cogeneration systems.  相似文献   
10.
A multifractal analysis has been performed on the 3D (three-dimensional) surface microtexture of magnesium-doped zinc oxide (ZnO:Mg) thin films with doping concentration of 0, 2, 4, and 5%. Thin films were deposited onto the glass substrates via the sol–gel spin coating method. The effect of magnesium doping, on the crystal structure, morphology, and band gap for ZnO:Mg thin films has been analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and UV–Vis spectroscopy. It has been observed that the surface of ZnO thin films is multifractal in nature. However, multifractality and complexity observed to decrease with increasing content of Mg in ZnO thin films due to formation of islands on the surface in accordance with Volmer–Weber growth mechanism. The investigations revealed that crystallinity, microtexture, morphology, and optical properties of the thin films can be tuned by controlling the Mg content within the ZnO lattice. In particular, their optical band gap energies were 3.27, 3.31, 3.34, and 3.33 eV at 0, 2, 4, and 5%, respectively. The prepared thin films of ZnO:Mg with tuned characteristics would have promising applications in optoelectronic devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号