首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   837篇
  免费   29篇
  国内免费   1篇
电工技术   15篇
综合类   6篇
化学工业   196篇
金属工艺   28篇
机械仪表   67篇
建筑科学   22篇
矿业工程   1篇
能源动力   84篇
轻工业   43篇
水利工程   3篇
无线电   45篇
一般工业技术   153篇
冶金工业   67篇
原子能技术   7篇
自动化技术   130篇
  2023年   8篇
  2022年   20篇
  2021年   22篇
  2020年   28篇
  2019年   26篇
  2018年   32篇
  2017年   25篇
  2016年   33篇
  2015年   28篇
  2014年   35篇
  2013年   79篇
  2012年   29篇
  2011年   69篇
  2010年   42篇
  2009年   39篇
  2008年   38篇
  2007年   29篇
  2006年   30篇
  2005年   20篇
  2004年   21篇
  2003年   18篇
  2002年   13篇
  2001年   3篇
  2000年   8篇
  1999年   13篇
  1998年   18篇
  1997年   13篇
  1996年   12篇
  1995年   12篇
  1994年   11篇
  1993年   5篇
  1992年   5篇
  1991年   5篇
  1990年   4篇
  1989年   6篇
  1988年   6篇
  1987年   5篇
  1986年   4篇
  1985年   4篇
  1984年   13篇
  1983年   2篇
  1982年   4篇
  1981年   10篇
  1980年   5篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1973年   3篇
  1971年   2篇
  1969年   1篇
排序方式: 共有867条查询结果,搜索用时 0 毫秒
1.
Metallurgical and Materials Transactions A - Hybrid nanocomposites have potential as wear-resistant materials. However, synthesizing these nanocomposites by conventional molten state methods result...  相似文献   
2.
3.
A special boundary integral method developed for two-dimensional regions containing circular holes is used to calculate temperature and heat transfer on the boundaries of several selected regions. The geometrical configuration of the region is arbitrary and convective boundary conditions are assumed. An important feature of the method is analytic representation of temperature and its normal derivative on the interior circular holes in the form of a harmonic series. This makes the application of the boundary integral method convenient and free from conditioning problems associated with small interior boundaries. Heat transfer from circular isothermal interior holes are calculated for several illustrative examples using three terms of the harmonic series representation for heat transfer at each of the circular boundaries. The results are presented and discussed.  相似文献   
4.
The design of vehicles transporting hazardous materials has important public safety and economic implications. Conventional wisdom among industry and government has held that a thicker tank on railroad tank cars and trucks reduces risk. However, a thicker tank increases vehicle weight and thus leads to an increase in the number of shipments required to transport the same amount of product and consequently greater exposure to accidents. In this research we develop a model that analyzes the tradeoff between increased damage resistance and greater exposure to accidents in which the objective function is minimization of the probability of release. The model accounts for the reduction in tank car release probability as a function of tank thickness, and the increased exposure to accidents that occurs due to the increased number of shipments needed for the heavier car. Three variables affecting this optimal thickness are considered in this paper: the volumetric capacity of the tank, the probability of release from other, non-tank sources, and the weight capacity of the car. Sensitivity analyses using the model indicate that for any particular configuration of tank car there is an optimal thickness. This optimal thickness is affected by several factors and there is no single optimum for all tank cars.  相似文献   
5.
In this work, we provide the evidence of polymer transcrystallinity in the presence of carbon nanotubes (CNTs). The interfacial morphology of carbon nanotube fiber-polypropylene matrix is investigated by means of polarized optical microscopy (POM), wide-angle X-ray diffraction (WAXD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The supramolecular microstructures of polypropylene transcrystals induced by the nanotube fiber are observed in the range of isothermal crystallization temperatures from 118 °C to 132 °C. The dynamic process of transcrystallization is analyzed by using the theory of heterogeneous nucleation. Microstructure analysis shows that the nanotubes can nucleate the growth of both α- and γ-transcrystal, and α-transcrystals dominate the overall interfacial morphology. Close to the nanotube fiber surface, a cross-hatched lamellar microstructure composed of mother lamellae and daughter lamellae is observed.  相似文献   
6.
Large internal strains and stresses can be produced by low temperature implantation over small distances from the free surface in a thick substrate. These are typically non-uniform and have large composition gradients. In dilute bcc solutions, containing unclustered interstitial implants, the residual macroscopic strains may be treated as isotropic. The calculation of residual strain (or stress) is based upon anisotropic elasticity theory and internal stress is given in terms of the dipole tensor for individual defects in single crystal films. In a completely elastic zone, forces act to maintain a rigid outside surface and cause the strain distribution to be zero along directions parallel to the free surface. This produces a strain magnification along the perpendicular direction from Poisson contractions. If the implanted zone is completely relaxed by plastic deformation, the strains are described by the free expansion strains due to both implants and lattice damage. There is no angular dependence of the free expansion strain in this extreme condition. One can determine whether a zone is completely elastic, completely relaxed by plastic deformation, or in some intermediate state from plots of strain against sin2, where is the angle of tilt relative to the surface normal. These results may be obtained from X-ray Bragg intensity data by measuring shifts and line broadening from (hkl) planes at different tilt angles. Theoretical results are given for both single crystal and polycrystalline materials in terms of residual strain and stress.  相似文献   
7.
In drug delivery systems that use silicone elastomers as a diffusion matrix for the active drug, it is common to crosslink the material by the hydrosilylation reaction. In this platinum‐catalyzed reaction, vinyl groups on a polymer add to the methyl siloxane hydride (MHS) groups on a low molecular mass crosslinker. With an excess of crosslinker, a fast curing is achieved and a fully crosslinked material is formed. Unreacted MHS groups were shown to remain in the elastomer after curing because of the excess crosslinker. In this work, a simple procedure was developed to eliminate the unreacted MHS groups from the final product. We found that storage of the product at +40°C and 75% relative humidity for a few weeks will effectively destroy the residual MHS groups in the elastomer. The effects of varying levels of humidity, oxygen, and temperature on this postcuring procedure were studied. The amount of MHS groups was measured with NMR and IR spectroscopy. We also found that the hardness of the material increased by approximately 25% as a consequence of this postcuring treatment. This increase is probably due to a secondary crosslinking reaction between MHS and silanol groups. Heat treatment at higher temperatures led to an even further increase in the hardness and compression modulus. Because no MHS groups remained in the elastomer when this heat treatment was started, it is apparent that another secondary crosslinking reaction is occurring, probably silanol condensation. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2254–2264, 2002  相似文献   
8.
Blends of poly(ethylene terephthalate) (PET) and poly(ethylene terephthalate‐co‐4,4′‐ bibenzoate) (PETBB) are prepared by coextrusion. Analysis by 13C‐NMR spectroscopy shows that little transesterification occurs during the blending process. Additional heat treatment of the blend leads to more transesterification and a corresponding increase in the degree of randomness, R. Analysis by differential scanning calorimetry shows that the as‐extruded blend is semicrystalline, unlike PETBB15, a random copolymer with the same composition as the non‐ random blend. Additional heat treatment of the blend leads to a decrease in the melting point, Tm, and an increase in glass transition temperature, Tg. The Tm and Tg of the blend reach minimum and maximum values, respectively, after 15 min at 270°C, at which point the blend has not been fully randomized. The blend has a lower crystallization rate than PET and PETBB55 (a copolymer containing 55 mol % bibenzoate). The PET/PETBB55 (70/30 w/w) blend shows a secondary endothermic peak at 15°C above an isothermal crystallization temperature. The secondary peak was confirmed to be the melting of small and/or imperfect crystals resulting from secondary crystallization. The blend exhibits the crystal structure of PET. Tensile properties of the fibers prepared from the blend are comparable to those of PET fiber, whereas PETBB55 fibers display higher performance. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1793–1803, 2004  相似文献   
9.
Friction stir welding (FSW), which has several advantages over the conventional welding processes, is a solid-state welding process where no gross melting of the material being welded takes place. Despite significant advances over the last decade, the fundamental knowledge of thermomechanical processes during FSW is still not completely understood. To gain physical insight into the FSW process and the evaluation of the critical parameters, the development of models and simulation techniques is a necessity. In this article, the available literature on modeling of FSW has been reviewed followed by details of an attempt to understand the interaction between process parameters from a simulation study, performed using commercially available nonlinear finite element (FE) code DEFORM. The distributions of temperature, residual stress, strain, and strain rates were analyzed across various regions of the weld apart from material flow as a means of evaluating process efficiency and the quality of the weld. The distribution of process parameters is of importance in the prediction of the occurrence of welding defects, and to locate areas of concern for the metallurgist. The suitability of this modeling tool to simulate the FSW process has been discussed. The lack of the detailed material constitutive information and other thermal and physical properties at conditions such as very high strain rates and elevated temperatures seems to be the limiting factor while modeling the FSW process.  相似文献   
10.
Platforms with automatic memory management, such as the JVM, are usually considered free of memory leaks. However, memory leaks can happen in such environments, as the garbage collector cannot free objects, which are not used by the application anymore, but are still referenced. Such unused objects can eventually fill up the heap and crash the application. Although this problem has been studied extensively, nevertheless, there are still many rooms for improvement in this area. This paper describes the statistical approach for memory leak detection, as an alternative, along with a commercial tool, Plumbr, which is based on the method. The tool is later analyzed with three case studies of real applications and in the process also analyzes strengths and weaknesses of the statistical approach for memory leak detection. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号