首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   18篇
  国内免费   6篇
电工技术   8篇
综合类   2篇
化学工业   38篇
金属工艺   11篇
机械仪表   7篇
建筑科学   5篇
矿业工程   2篇
能源动力   22篇
轻工业   21篇
水利工程   2篇
石油天然气   5篇
无线电   17篇
一般工业技术   57篇
冶金工业   14篇
原子能技术   1篇
自动化技术   17篇
  2024年   1篇
  2023年   3篇
  2022年   9篇
  2021年   9篇
  2020年   10篇
  2019年   17篇
  2018年   20篇
  2017年   19篇
  2016年   9篇
  2015年   13篇
  2014年   13篇
  2013年   18篇
  2012年   17篇
  2011年   11篇
  2010年   15篇
  2009年   4篇
  2008年   6篇
  2007年   3篇
  2006年   2篇
  2005年   8篇
  2004年   1篇
  2003年   8篇
  2002年   2篇
  2001年   1篇
  2000年   6篇
  1999年   2篇
  1998年   1篇
  1989年   1篇
排序方式: 共有229条查询结果,搜索用时 15 毫秒
1.
This paper deals with the problem of designing a robust static output feedback controller for polytopic systems. The current research that tackled this problem is mainly based on LMI method, which is conservative by nature. In this paper, a novel approach is proposed, which considers the design space of the controller parameters and iteratively partitions the space to small simplexes. Then, by assessing the stability in each simplex, the solution space for design parameters is directly determined. It has been theoretically proved that, if there exists a feasible solution in the design space, the algorithm can find it. To validate the result of the proposed approach, comparative simulation examples are given to illustrate the performance of the design methodology as compared to those of previous approaches.  相似文献   
2.
Natural depletion of petroleum reservoirs as well as gas injection for enhance oil recovery, are unavoidable processes in the oil industry. Foremost, prediction of the problems due to these two processes is very necessary and important. So many field and experimental experiences have shown that heavy organic depositions, especially asphaltene deposition, are principal results during these processes. Results of laboratory simulation of asphaltene deposition during the natural depletion of petroleum reservoirs and also during gas injection and enhanced oil recovery (EOR) processes are reported here. This is achieved through the design of a new experimental setup for the investigation of pressure and composition effects on asphaltene deposition in petroleum fluids at high pressure and high temperature conditions. In this work, asphaltene deposition during decreasing pressure, from pressures greater than reservoir pressure to pressures below the bubble point pressure (natural depletion) and also asphaltene deposition during natural gas injection in reservoir conditions, are studied for three samples—one recombined sample and two bottomhole samples. All of the obtained results from this work conform to theoretical and other experimental works.  相似文献   
3.
Carbon quantum dots (CQDs) have emerged as potential alternatives to classical metal-based semiconductor quantum dots (QDs) due to the abundance of their precursors, their ease of synthesis, high biocompatibility, low cost, and particularly their strong photoresponsiveness, tunability, and stability. Light is a versatile, tunable stimulus that can provide spatiotemporal control. Its interaction with CQDs elicits interesting responses such as wavelength-dependent optical emissions, charge/electron transfer, and heat generation, processes that are suitable for a range of photomediated bioapplications. The carbogenic core and surface characteristics of CQDs can be tuned through versatile engineering strategies to endow specific optical and physicochemical properties, while conjugation with specific moieties can enable the design of targeted probes. Fundamental approaches to tune the responses of CQDs to photo-interactions and the design of bionanoprobes are presented, which enable biomedical applications involving diagnostics and therapeutics. These strategies represent comprehensive platforms for engineering multifunctional probes for nanomedicine, and the design of QD probes with a range of metal-free and emerging 2D materials.
  相似文献   
4.
5.
Polydimethylsiloxane (PDMS) is a commonly used material in biomedical engineering (Sollier et al. in Lab Chip 11(22):3752–3765, 2011; Palchesko et al. in PLoS ONE 7(12):e51499, 2012; Berthier et al. in Lab Chip 12(7):1224–1237, 2012). Its elastic nature makes PDMS especially attractive for microfluidic large-scale integration (mLSI) technology where micromechanical valves are actuated by deflecting a PDMS membrane under pressure. Therefore, understanding and control of PDMS elastic properties have commercial and scientific significance. In this study, we have investigated the effects of pre-polymer/cross-linker storage conditions on the mechanical properties of cured PDMS films as well as on microfluidic devices. We have showed that when the uncured components of PDMS are exposed to different humidity conditions, the elasticity of the PDMS changes and this is revealed as a change in the Young’s modulus of the cured PDMS. The high humidity (~85%) exposure for 24 h causes PDMS to become softer as confirmed by a significant decrease in the Young’s modulus values from 1.2 to 0.9 MPa. Furthermore, as the PDMS is exposed to high humidity conditions for longer periods (72 h), the Young’s modulus decreases down to 0.7 MPa. We found that exposing only the pre-polymer PDMS (Part A) to humid air does not alter the cured PDMS properties significantly, whereas exposure of the cross-linker (Part B) is responsible for the elasticity change. We have strictly controlled the storage humidity to build more reliable microfluidic chips using mLSI. As a result, actuation pressure of valves (10 psi) and defects of devices (in <30% of chips) are significantly reduced. These results suggest that to improve the manufacturing yield and reliability of PDMS devices, storage humidity should be controlled immediately after the material synthesis.  相似文献   
6.
Possible corrections to the thermodynamic quantities of a 4D Schwarzschild–anti–de Sitter (SAdS) black hole are investigated by considering the generalized uncertainty principle (GUP) and the modified dispersion relation (MDR) separately. The quantum gravitational corrections to the Hawking temperature, energy and entropy of the black hole are calculated based on both the GUP and the MDR analysis. The explicit form of the corrections is worked out up to the sixth power of the Planck length. The quantum-corrected thermodynamic quantities due to GUP and MDR are used separately to obtain the quantum-gravitational corrections to the Cardy–Verlinde (C–V) formula. It is found that the C–V formula receives some new corrections in either of approaches. Through comparison of the corrections obtained from GUP and MDR approaches, it is shown that the results of these two alternative approaches should be identical if one uses the suitable expansion coefficients. Finally, the renormalized form of the C–V formula is introduced by redefining the Virasoro operator and the central charge within both the GUP and the MDR.  相似文献   
7.
8.
9.
In present work, the aim of producing biodiesel from waste cooking oil was pursued by doping the cerium element into the MCM‐41 framework as catalyst with various Si/Ce molar ratio (5, 10, 25, 50, and Ce = 0). The catalytic performance and stability improved by employing the ultrasound irradiation in active phase loading step of catalyst preparation. The physicochemical characteristics of synthesized samples were investigated using various techniques as follows: Brunauer‐Emmett‐Teller (BET), X‐ray powder diffraction (XRD), Fourier transfer infrared (FTIR), energy‐dispersive X‐ray spectroscopy (EDX), transmission electron microscopy (TEM), and field emission scanning electron microscope (FESEM). The XRD patterns along with the results of FTIR and BET analysis revealed the MCM‐41 framework destruction while increasing the Ce content. The FESEM images of the nanocatalysts illustrated a well distribution and uniform morphology for the Ca/CeM (Si/Ce = 25). The particle size and size distribution of the Ca/CeM (Si/Ce = 25) were subsequently determined by TEM and FESEM images. The activity of fabricated nanocatalysts was evaluated by measuring the free acid methyl ester (FAME) content of produced biodiesel. The tests were carried out at constant operational conditions: T = 60°C, catalyst loading = 5 wt%, methanol/oil molar ratio = 9, and 6‐hour reaction time. A superior activity was observed for Ca/CeM (Si/Ce = 25) among other nanocatalysts with 96.8% conversion of triglycerides to biodiesel. The mentioned sample was utilized in five reaction cycles, and at the end of the fifth cycle, the conversion reached to 91.5% which demonstrated its significant stability.  相似文献   
10.
Nowadays, smart wearable technology comes up to different sectors and is gaining momentum to be implemented in everyday objects. Smartwatches are the most popular type of wearable devices. The current study attempts to understand the motivational factors of consumers’ continuous intention to use smartwatches. In particular, a netnography research has been conducted and consumers’ opinions on smartwatches on Amazon have been analysed. Eight key determinants of continuous usage intention of smartwatches have been identified. Some of them (healthology, complementary goods and enabling technologies) were not included in previous technology adoption models, highlighting that existing models need to be updated when it comes in the domain of continuous usage intention of wearable technologies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号