首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
化学工业   6篇
能源动力   4篇
轻工业   2篇
无线电   3篇
一般工业技术   1篇
自动化技术   1篇
  2021年   4篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2011年   2篇
  2010年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Temperature programmed reduction (TPR) analysis was applied to investigate the chemical reduction progression behavior of molybdenum oxide (MoO3) catalyst. The composition and morphology of the reduced phases were characterized by X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FE-SEM). The reduction progression of MoO3 catalyst was attained with different reductant types and concentration (10% H2/N2, 10% and 20% CO/N2 (%, v/v)). Two different modes of reduction process were applied. The first approach of reduction involved non-isothermal mode reduction up to 700 °C, while the second approach of reduction involved the isothermal mode reduction for 60 min at 700 °C. Hydrogen temperature programmed reduction (H2-TPR) results showed the reduction progression of three-stage reduction of MoO3 (Mo6+ → Mo5+ → Mo4+ → Mo0) with Mo5+ and Mo4+. XRD analysis confirmed the formation of Mo4O11 phase as an intermediate phase followed by MoO2 phase. After 60 min of isothermal reduction, peaks of metallic molybdenum (Mo) appeared. Whereas, FESEM analysis showed porous crater-like structure on the surface cracks of MoO2 layer which led to the growth of Mo phase. Meanwhile, the reduction of MoO3 catalyst in 10% carbon monoxide (CO) showed the formation of unstable intermediate phase of Mo9O26 at the early stage of reduction. Furthermore, by increasing 20% CO led to the carburization of MoO2 phase, resulted in the formation of Mo2C rather than the formation of metallic Mo, as confirmed by XPS analysis. Therefore, the presented study shows that hydrogen gave better reducibility due to smaller molecular size, which contributed to high diffusion rate and achieved deeper penetration into the MoO3 catalyst compared to carbon monoxide reductant. Hence, the reduction of MoO3 in carbon monoxide atmosphere promoted the formation of Mo2C which was in agreement with the thermodynamic assessment.  相似文献   
2.
Progressive freeze concentration (PFC) is a process where only a large single ice crystal is formed in the system and grown on the cooling surface so that the separation between the ice crystal and the mother solution is very easy. This makes the system very simple and leads to a lower cost. The conventional setup of PFC produces ice with high purity but lower productivity than suspension freeze concentration (SFC). The volume of ice produced is also usually low. Hence, continued areas of the development for PFC system include the quest for improved productivity and better efficiency. Different kinds of design have been investigated, which are easy to operate and cost-effective besides the ability to obtain high quality of product and better efficiency of the system. The PFC system is recognized as a good alternative if high-quality products can be produced with higher productivity. In this article, previous researches on PFC designs were reviewed for the purpose of providing an understanding on methods of designing a PFC system and also to provide references for future application of PFC.  相似文献   
3.
We report the development and characterization of a microfluidics-based bioimprint process using high-density microchannel arrays for cell-culture and polymer delivery. The tubeless PDMS arrays consist of multiple independent microchannels and allow for parallelized bioimprint via automated dispensing and passive pumping. Using the microchannels, a 400 nm thin test pattern was replicated into a methacrylate biopolymer to demonstrate process applicability. Bioimprints of cobalt chloride stimulated Ishikawa endometrial cancer cells exhibiting exocytosis-like pore structures were compared with controls using AFM to exemplify a process application. The devices can be used for high-throughput cell assays, cell developmental studies and the formation of phenotype-specific biomimetic scaffolds.  相似文献   
4.
The application of solvent-aided crystallization (SAC) is based on the addition of a solvent, here 1-butanol, to crude biodiesel to catalyze the purification process by separating biodiesel from contaminants via crystallization process. Response surface methodology was applied to optimize the process parameters of SAC, represented by biodiesel purity. The purified biodiesel was analyzed by means of gas chromatography-mass spectrometry for the composition of the present fatty acid methyl ester (FAME). Under the predicted optimum process conditions within the experimental ranges for the highest biodiesel purity, the predicted biodiesel purity was 99.375 %.  相似文献   
5.
One way to conserve fresh water resources is by reusing water from wastewater. For instance, water can be removed from wastewater through formation of ice crystal layers by progressive freeze concentration (PFC). The application of PFC to remove water from produced water and biodiesel wastewater was assessed through the final concentration of concentrated wastewater and purity of melted ice crystals. No PFC study has been done on these applications. In order to evaluate the efficiency of PFC, the effective partition constant (K) and separation efficiency (SE) were calculated for the effect of stirring rate and coolant temperature. The results demonstrate that PFC is a more practical method for produced water, as compared to biodiesel wastewater which is based on the value of low K and high SE.  相似文献   
6.
The physical and chemical behaviour of bulk tungsten oxide (WO3) and Ni doped tungsten oxide (15% Ni/WO3) were examined by performing a temperature-programmed reduction (TPR) technique. The chemical composition, morphology, and surface composition of both samples before and after reduced were analysed by X-ray diffraction (XRD), scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS) analysis. The XRD pattern of calcined Ni doped tungsten oxide powder comprised of WO3 and nickel tungstate (NiWO4) phases. The reduction behaviour was investigated by a non-isothermal reduction up to 900 °C achieved under (10 and 20% v/v) hydrogen in nitrogen (H2 in N2) and (20 and 40% v/v) carbon monoxide in nitrogen (CO in N2) atmospheres. The H2-TPR were indicated the reduction of bulk WO3 and 15% NiWO3 proceed in three steps (WO3 → WO2 → WO2 + W) and (WO3 → WO2 → W + Ni4W) respectively under 20% H2. Whereas, the reduction of 15% WO3 under 40% CO involves of two following stages: (i) low temperature (<800 °C) transformation of WO3 → WO2.72 → WO2 and, (ii) high temperature (>800 °C) transformation of WO2 → W → WC. Furthermore, NiWO4 alloy phase was transformed according to the sequence NiWO4 → Ni + WO2.72 → Ni + WO2 → Ni + W → Ni4W + W at temperature >700 °C and >800 °C in H2 and CO atmospheres, respectively. It can be concluded that the reduction behaviour of WO3 is matched with the thermodynamic data. In addition, the reduction under H2 is more favourable and have better reducibility compared to the CO gas. It is due to the small molecule size and molecule mass of H2 that encourages the diffusion of H2 molecule into the internal surface of the catalyst compared to CO. Moreover, Ni additive had improved the WO3 reducibility and enhancing the CO adsorption and promotes the formation of tungsten carbide (WC) by carburisation reaction. Besides, the formation of Ni during the reduction of 15% Ni/WO3 under CO reductant catalysed the Boudouard reaction to occur, which disproportionated the carbon monoxide to carbon dioxide and carbon (CO → CO2 + C).  相似文献   
7.
Chemical reduction behaviour of 3% chromium doped (Cr–Fe2O3) and undoped iron oxides (Fe2O3) were investigated by using temperature programmed reduction (TPR). The reduced phases were characterized by X-ray diffraction spectroscopy (XRD). The reduction processes were achieved with 10% H2 in nitrogen (%, v/v), 10% and 20% of carbon monoxide (CO) in nitrogen (%, v/v). In hydrogen atmosphere, the TPR results indicate that the reduction of Cr–Fe2O3 and Fe2O3 proceed in three steps (Fe2O3 → Fe3O4 → FeO → Fe) with Fe3O4 and FeO as intermediate states. A complete reduction to metallic iron for both samples occurred at 900 °C. As for CO reductant, the profiles show the reduction of Fe2O3 also proceeded in three steps with a complete reduction occurs at 900 °C in 10% CO with no sign of carbide formation. Nevertheless, a 20% CO was able to reduce the completely at lower temperature at 700 °C and there is a formation of iron carbide at 500 °C but the carbide disappeared as the reduction temperature increase. Meanwhile in 10% CO atmosphere, Cr–Fe2O3 shows a better reducibility compared to Fe2O3 with a complete reduction at 700 °C, which is 200 °C lower than Fe2O3. A Cr dopant in the Fe2O3 can lead to formation of various forms of iron carbides such as F2C, Fe5C2, Fe23C6 and Fe3C as the CO concentration was increased to 20%. The transformation profile of iron phases during carburization follows the following forms, Fe2O3 → Fe3O4 → iron carbides (FexC). The XRD pattern shows the diffraction peaks of Cr–Fe2O3 are more intense with improved crystallinity for the characteristic peaks of Fe2O3 compare to undoped Fe2O3. No visible sign of chromium particles peaks in the XRD spectrum that indicates the Cr particles loaded onto the iron oxide are well dispersed. The uniform dispersion with no sign of sintering effects of the Cr dopant on the Fe2O3 was confirmed by FESEM. The study shows that Cr dopant gives a better reducibility of iron oxide but promotes the formation of carbides in an excess CO concentration.  相似文献   
8.
Progressive cryoconcentration (PC) is gaining acceptance in solution concentration process as it could provide an easy separation and ice purification with relatively low energy. In fact, the advantages of PC process as compared to the other concentration methods have led the growth of related studies that aim to provide the best system or condition for the separation process involved. Apart from the provision of appropriate equipment, the PC process should also be conducted at its optimum conditions of operating parameters involved, which could give the highest separation efficiency. Hence, relationship between the parameters, which covers both manipulated and determinant parameters should be studied first. This review summarizes the previous conducted studies on the effect of various operating parameters on the PC performance, which includes effect of coolant temperature, solution flowrate, initial solution concentration, freezing time, ice crystal front growth rate, and stirring rate.  相似文献   
9.
Artificial Magnetic Conductor (AMC) is a type of implemented metamaterial in several antennae and microwave design applications. By utilizing the unique characteristics of metamaterials which do not exist naturally, the performance of various microwave devices can be enhanced. This article elaborates on the technical perspective and recent works on AMC for antenna applications. The technical perspective discusses the theoretical aspects, simulation design procedures, and the measurement setup used to characterize the AMC unit cell. Subsequently, various recent works of antenna design that involve the incorporation of AMC are discussed thoroughly. Each of the recent works is highlighted with specific performance enhancements that can be achieved with the introduction of AMC. The conventionally narrow band property of AMC, which is the bandwidth at which the radiation characteristics and directivity of the antenna can be manipulated, is discussed. The property limits the applications of AMC in wideband antenna applications. One of the techniques to improve the narrow band AMC as the ground plane is discussed in detail. The employment of AMC has solved many issues whilst overcoming the typical limitations in conventional antenna designs.  相似文献   
10.
Replication of biological cells for the purpose of imaging and analysis under electron and scanning probe microscopy has facilitated the opportunity to study and examine some molecular processes of living cells in a manner that was not possible before. The difficulties faced in direct cellular analysis when using and operating atomic force microscopy (AFM) in situ for morphological studies of biological cells has lead to the development of a novel method for biological cell studies based on nanoimprint lithography. The realisation of the full potential of high-resolution AFM imaging has revealed some very important biological events such as exocytosis and endocytosis. In this work, a soft lithography bioimprint replication technique, which involved simple fabrication steps, was used to form a hard replica of the cell employing a newly developed biocompatible polymer that has fast curing time at room temperature essential for this process. The structure and topography of the endometrial (Ishikawa) cancer cell was investigated in this study. Cells were cultured and incubated in accordance with standard biological culturing procedures and protocols approved by the Human Ethics Committee, University of Otago. An impression of the cell profile was created by applying a layer of the polymer onto the cells attached to a substrate and rapidly cured under UV-light. Fast UV radiation helps to lock cellular processes within minutes after exposure and replicas of the cancer cells exhibit ultra-cellular structures and features down to nanometer scale. Elimination of the AFM tip damping effects due to probing of the soft biological tissue allows imaging with unprecedented resolution. High-resolution AFM imagery provides the opportunity to examine the structure and topography of the cells closely so that any abnormalities can be identified. Craters that resemble granules may be observed. These represent steps on a transitional series of sequential structures that indicate either an endocytotic or exocytotic processes, which were evident on the replicas. These events, together with exocytosis, play a very significant part in the tumorigenesis of these cancer cells. By forming cell replica impressions, not only have they the potential to understand biological cell conditions, but may also benefit in synthesizing three dimensional (3-D) scaffolds for natural growth of biological cells and provide an improvement over standard cell growth conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号