首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学工业   2篇
轻工业   2篇
  2022年   1篇
  2021年   1篇
  2013年   2篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
This research investigates the effect of fiber, yarn, and fabric parameters on curling phenomenon of single jersey weft-knitted fabrics which is interpreted to have curling surface in both course and wale direction. Taguchi’s experimental design is used to estimate the optimum process conditions and to examine the individual effects of all controllable factors on curling one by one. The controllable factors are blending ratio of polyester to cotton fiber, yarn twist and count, fabric structure, knit density, and relaxation time. Results show that fabric structure and knit density have the most dominant effect on the fabric curling. The optimum conditions of minimum curling values were also determined. Finally, the curling surface in course and wale direction as a two features of curling phenomenon was predicted using artificial neural network which selects scale conjugate gradient learning algorithm based on process parameters of single jersey weft-knitted fabrics. Our findings confirm the good capability of artificial neural network algorithm to predict these features.  相似文献   
2.
Telomere shortening can result in cellular senescence and in increased level of genome instability, which are key events in numerous of cancer types. Despite this, few studies have focused on the effect of nanomaterial exposure on telomere length as a possible mechanism involved in nanomaterial-induced carcinogenesis. In this study, effects of exposure to multiwalled carbon nanotubes (MWCNT) on telomere length were investigated in mice exposed by intrapleural injection, as well as in human lung epithelial and mesothelial cell lines. In addition, cell cycle, apoptosis, and regulation of genes involved in DNA damage repair were assessed. Exposure to MWCNT led to severe fibrosis, infiltration of inflammatory cells in pleura, and mesothelial cell hyperplasia. These histological alterations were accompanied by deregulation of genes involved in fibrosis and immune cell recruitment, as well as a significant shortening of telomeres in the pleura and the lung. Assessment of key carcinogenic mechanisms in vitro confirmed that long-term exposure to the long MWCNT led to a prominent telomere shortening in epithelial cells, which coincided with G1-phase arrest and enhanced apoptosis. Altogether, our data show that telomere shortening resulting in cell cycle arrest and apoptosis may be an important mechanism in long MWCNT-induced inflammation and fibrosis.  相似文献   
3.
Textile-based strain sensors have been used in smart textiles frequently. In this study, effect of percentage of stainless steel fiber of spun yarn (i.e. 28 and 40%) and weft density (i.e. 14, 18, and 22 per cm) of conductive yarn on performance and sensitivity of woven fabrics strain sensor under tensile cyclic loading in 3 mm elongation and also behavior of woven fabric strain sensors under simple tensile loading, was studied. Our finding showed the interaction between weft density and percentage of conductive fiber of spun yarns on performance and sensitivity of strain sensors under cyclic loading. Samples prepared by conductive yarns with 40% stainless steel fiber showed no clear cyclic variation in 18 and 22 weft per cm. This trend for samples woven with conductive yarn with 28% stainless steel fiber was only observed in 22 weft per cm. All samples showed the same trend of resistance variation during simple tensile loading, although the level of resistance variation was different. The slope of resistance variation during tensile cyclic loading confirmed plastic deformation of samples. Finally, by comparing the sensitivity of strain sensors during cyclic loading no obvious advantage was obtained for samples woven with conductive yarn with 40% stainless steel fiber compared with samples woven with conductive yarn with 28% stainless steel fiber.  相似文献   
4.
There is little in vitro data available on long-term effects of TiO2 exposure. Such data are important for improving the understanding of underlying mechanisms of adverse health effects of TiO2. Here, we exposed pulmonary epithelial cells to two doses (0.96 and 1.92 µg/cm2) of TiO2 for 13 weeks and effects on cell cycle and cell death mechanisms, i.e., apoptosis and autophagy were determined after 4, 8 and 13 weeks of exposure. Changes in telomere length, cellular protein levels and lipid classes were also analyzed at 13 weeks of exposure. We observed that the TiO2 exposure increased the fraction of cells in G1-phase and reduced the fraction of cells in G2-phase, which was accompanied by an increase in the fraction of late apoptotic/necrotic cells. This corresponded with an induced expression of key apoptotic proteins i.e., BAD and BAX, and an accumulation of several lipid classes involved in cellular stress and apoptosis. These findings were further supported by quantitative proteome profiling data showing an increase in proteins involved in cell stress and genomic maintenance pathways following TiO2 exposure. Altogether, we suggest that cell stress response and cell death pathways may be important molecular events in long-term health effects of TiO2.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号