首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
化学工业   9篇
能源动力   2篇
轻工业   2篇
一般工业技术   2篇
冶金工业   1篇
自动化技术   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2013年   3篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2004年   2篇
  2003年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
The kinetics of ruthenium(III) (Ru(III)) and osmium(VIII) (Os(VIII)) catalysed oxidation of neuroleptic drug, gabapentin (GBP) by diperiodatoargentate(III) (DPA) in alkaline medium at 27 °C and a constant ionic strength of 0.60 mol dm?3 was studied spectrophotometrically. The oxidation products in both the cases are 1-(hydroxymethyl) cyclohexane acetic acid and Ag(I). The stoichiometry is the same in both the catalysed reactions i.e. [gabapentin]:[DPA] = 1:1. The reaction is of first order in Os(VIII)/Ru(III) and [DPA] and has less than unit order in both [GBP] and [alkali]. The oxidation reaction in alkaline medium has been shown to proceed via a Os(VIII)/Ru(III)-gabapentin complex, which further reacts with one mole of monoperiodatoargentate(III) (MPA) species in a rate determining step followed by other fast steps to give the products. The main products were identified by spot test and spectroscopic studies. The reaction constants involved in the different steps of the mechanism are calculated. The catalytic constant (K c) was also calculated for both catalysed reactions at different temperatures. From the plots of log K c versus 1/T, values of activation parameters with respect to the catalyst have been evaluated. The activation parameters with respect to slow step of the mechanism are computed and discussed and thermodynamic quantities are also determined. It has been observed that the catalytic efficiency for the present reaction is in the order of Os(VIII)>Ru(III). The probable active species of catalyst and oxidant have been identified.  相似文献   
2.
The high viscosity of fish oil leads to problem in pumping and spray characteristics. The inefficient mixing of fish oil with air leads to incomplete combustion. The best way to use fish oil as fuel in compression ignition (CI) engines is to convert it into biodiesel. It can be used in CI engines with very little or no engine modifications. This is because it has properties similar to mineral diesel. Combustion tests for methyl ester of fish oil and its blends with diesel fuel were performed in a kirloskar H394 DI diesel engine, to evaluate fish biodiesel as an alternative fuel for diesel engine, at constant speed of 1500 rpm under variable load conditions. The tests showed no major deviations in diesel engine's combustion as well as no significant changes in the engine performance and reduction of main noxious emissions with the exception on NOx. Overall fish biodiesel showed good combustion properties and environmental benefits.  相似文献   
3.
Food Science and Biotechnology - Antifungal efficacy of Azotobacter nigricans on Fusarium infection, total seedlings mass, root and shoot length, and seed germination in maize, sorghum, and wheat...  相似文献   
4.
Abstract The kinetics of osmium(VIII) and ruthenium(III) catalysed oxidation of l-lysine (l-lys) by diperiodatocuprate(III) (DPC) in alkaline medium at a constant ionic strength of 0.15 mol dm−3 was studied spectrophotometrically. The reaction between l-lys and DPC in alkaline medium exhibits 1:2 stoichiometry in both catalysed reaction (l-lys: DPC). The reaction is first order in [DPC] and has less than unit order both in [l-lys] and [alkali]. Increase in periodate concentration decreases the rate. Intervention of free radicals was observed in the reaction. The main products were identified by spot test, IR and GC-MS studies. Probable mechanisms are proposed and discussed. The reaction constants involved in the different steps of the mechanism are calculated. The activation parameters with respect to the slow step of the mechanism are computed and discussed and thermodynamic quantities are also determined. It has been observed that the catalytic efficiency for the present reaction is in the order of Os(VIII) > Ru(III). The active species of catalyst and oxidant have been identified. Graphical Abstract The kinetic and mechanistic investigations of the reaction between DPC and l-lysine has been studied in presence of microamounts of ruthenium(III) and osmium(VIII) in alkaline medium. The monoperiodatoargentate(III), [Ru(H2O)5OH]2+ and [OsO4(OH)2]2− are considered as the active species of oxidant, DPC, ruthenium(III) and osmium(VIII) respectively.   相似文献   
5.
A series of Cu–Co ferrites with the general formula Cu1-x Co x Fe2O4 (x = 0, 0.25, 0.50, 0.75 and 1.0) was prepared by a low-temperature hydroxide coprecipitation route. The catalyst systems were characterized by adopting various physicochemical techniques. The acid–base properties were studied in detail, and the catalytic activity as well as the selectivity for oxidative dehydrogenation of ethylbenzene was compared for various compositions. FTIR adsorption of pyridine is carried out to understand the relative acidity of various compositions of the systems. IR studies of spinel surface with adsorbed CO2 and adsorption studies of electron acceptors such as 7,7,8,8-tetracyanoquinodimethane, 2,3,5,6-tetrachloro-1-4-benzoquinone and p-dinitrobenzene are carried out to evaluate the nature of basic sites and the strength and distribution of electron donor sites present on the spinel surface. It is found that acidity (basicity) of the Cu1-x Co x Fe2O4 spinel system increases (decreases) from x = 0 to 1. A good correlation was found between the activity for this reaction and the surface acid–base properties of the catalysts. Intermediate compositions show better catalytic performance, among which x = 0.50 is superior and demonstrates an intermediate acid–base character. It was observed that dehydrogenation of ethylbenzene to styrene proceeds mainly on an acid–base pair site.  相似文献   
6.
Neat mahua oil poses some problems when subjected to prolonged usage in CI engine. The transesterification of mahua oil can reduce these problems. The use of biodiesel fuel as substitute for conventional petroleum fuel in heavy-duty diesel engine is receiving an increasing amount of attention. This interest is based on the properties of bio-diesel including the fact that it is produced from a renewable resource, its biodegradability and potential to exhaust emissions. A Cummins 6BTA 5.9 G2- 1, 158 HP rated power, turbocharged, DI, water cooled diesel engine was run on diesel, methyl ester of mahua oil and its blends at constant speed of 1500 rpm under variable load conditions. The volumetric blending ratios of biodiesel with conventional diesel fuel were set at 0, 20, 40, 60, and 100. Engine performance (brake specific fuel consumption, brake specific energy consumption, thermal efficiency and exhaust gas temperature) and emissions (CO, HC and NOx) were measured to evaluate and compute the behavior of the diesel engine running on biodiesel. The results indicate that with the increase of biodiesel in the blends CO, HC reduces significantly, fuel consumption and NOx emission of biodiesel increases slightly compared with diesel. Brake specific energy consumption decreases and thermal efficiency of engine slightly increases when operating on 20% biodiesel than that operating on diesel.  相似文献   
7.

Abstract  

The kinetics of osmium(VIII) (Os(VIII)) and ruthenium(III) (Ru(III)) catalysed oxidation of l-valine (l-val) by diperiodatoargentate(III) (DPA) in aqueous alkaline medium at 25 °C and a constant ionic strength of 0.006 mol dm−3 was studied spectrophotometrically. The stoichiometry is the same in both the catalysed reactions, i.e., [l-val]:[DPA] = 1:1. The reaction is of first order in [Os(VIII)], [Ru(III)], and [DPA] and has less than unit order in [l-val] and negative fractional order in [OH]. Added periodate had no effect on rate of reaction. The products were identified by spot test and characterized by spectral studies. The catalytic constant (K C) was also calculated for both catalysed reactions at different temperatures. The activation parameters with respect to slow step of the mechanisms were computed and discussed and thermodynamic quantities were also determined. It has been observed that the catalytic efficiency for the present reaction is in the order of Os(VIII) > Ru(III). The probable active species of catalyst and oxidant have been identified.  相似文献   
8.
Praseodymium (Pr) doped barium zirconium titanate with nominal composition (Ba1−xPrx)(Zr0.52Ti0.48)O3 (x = 0.1 and 0.2) were synthesized using solid state reaction method. X-ray analysis conform the formation of cubic phase Pr-doped barium zirconium titanate along with minor pyrochloric phase. The increase in grain size after primary investigation reveals the influence of Pr ions on the domain structure and its microstructure. In order to correlate the effect of the chemical composition with the conduction mechanism, different AC electrical parameters have been addressed. The frequency dependant tangent loss of the sample was less for both the ceramics. The temperature dependence results show that the dielectric parameters and resistivity increases as Pr-content in the ceramic increases; this is attributed to the grain size and dipole dynamics. Complex impedance (Z*) plots show frequency dependent behavior as the response for the grain resistance mechanisms. This mechanism has been represented by an equivalent circuit. The temperature dependence of the electrical conductivity and Seebeck coefficient showed n-type non-degenerated semiconductor in the measured temperature range. The temperature dependent conductivity measurement suggests a novel negative temperature coefficient of resistance behavior of the samples. Furthermore, the frequency dependent conductivity plot shows increasing behavior.  相似文献   
9.
Hard anodized (HA) and micro arc oxidation (MAO) coatings of identical thickness were deposited on two different high strength aluminum (Al) alloys namely, 2024‐T3 and 7075‐T6. Further, as received Al alloys were also subjected to shot peening (SP) to induce subsurface compressive residual stresses followed by the MAO coating deposition (SP + MAO). The average velocity of particle‐in‐flight during the SP process was measured and utilized to calculate the kinetic energy of the peening particles. The bare and coated alloys were subjected to completely reversed stress (R = ?1) rotating beam high cycle fatigue tests at five different stress levels. In addition, the bare and coated alloys were also evaluated for their tensile properties, elemental composition, phase constituents, surface, and cross‐sectional morphologies including the surface roughness (Ra, Rz) and correlated the same with the corresponding fatigue behavior. Irrespective of substrate alloy composition and stress levels investigated, the duplex SP + MAO treatment resulted in significant fatigue life enhancement over and above the fatigue life of corresponding bare (not shot peened) Al alloy, while the hard anodized and plain MAO (both without prior shot peening) continue to exhibit significant fatigue debit. Driven by the compressive residual stresses present beneath the subsurface region of SP + MAO coating interface, fractured surface examination of SP + MAO coatings clearly highlights the crack‐branching associated multiple crack deflection as the predominant operative mechanism responsible for diminishing the crack growth rate and therefore enhance the fatigue life as compared with the near linear crack extension without significant deflections leading to relative premature failure of plain MAO coated alloys.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号