首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学工业   2篇
能源动力   1篇
  2023年   1篇
  2019年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
2.
Using statistical mixture design, the best composition of a heterojunction photocatalyst containing ZnO, Ag3PO4, and WO3 was determined to maximize the sunlight driven ammonia removal from aqueous solution via both photocatalysis and adsorption processes. All samples were prepared by coprecipitation and immobilized over perlite granules as floatable support. X‐ray diffraction (XRD), Fourier‐transform infrared (FTIR), field emission scanning electron microscope (FESEM), Brunauer, Emmett, and Teller (BET), ultraviolet–visible (UV‐vis), and photoluminescence (PL) analyses were used to characterize the catalysts. Three responses of ammonia removal by photocatalysis, adsorption, and the total ammonia removal were modeled by special cubic models, and the ANOVA confirmed the significance of them. The maximum ammonia removal, approximately 88%, was obtained by photocatalyst composed of 32.93‐wt% WO3, 41.82‐wt% Ag3PO4, and 25.26‐wt% ZnO. The contribution of photocatalysis and adsorption was estimated to be 72.74% and 14.44%, respectively, indicating the dominance of photocatalysis process. According to kinetic study, the optimum photocatalyst showed the highest apparent rate constant and lowest half‐life time of ammonia removal. The maximum quantum yield of 1.7% was calculated from the best photocatalyst composite at the maximum intensity of visible light received from sunlight. The reuse ability test revealed that the optimum ternary photocatalyst is suitable for wastewater treatments in practical applications.  相似文献   
3.
The photocatalytic activity of TiO2 over light expanded clay aggregate granules was determined for degradation of dimethyl aminoethyl azide (DMAZ) in water with mercury lamps as UV sources. First, the catalyst was synthesized and characterized, then, the effect of various parameters on DMAZ degradation was investigated. The results showed that the photodegradation improved with increasing initial concentration of DMAZ. In addition, the DMAZ conversion grew with higher pH value and catalyst dosage. Under optimum conditions, a degradation of 54.7 % for DMAZ could be achieved. A first‐order rate model presented good accordance with the experimental data.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号