首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   2篇
电工技术   18篇
化学工业   52篇
金属工艺   7篇
机械仪表   4篇
建筑科学   1篇
能源动力   5篇
轻工业   3篇
无线电   12篇
一般工业技术   23篇
冶金工业   25篇
原子能技术   3篇
自动化技术   7篇
  2022年   9篇
  2021年   7篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   4篇
  2015年   1篇
  2014年   3篇
  2013年   9篇
  2012年   7篇
  2011年   5篇
  2010年   3篇
  2009年   4篇
  2008年   1篇
  2007年   5篇
  2006年   5篇
  2005年   1篇
  2004年   5篇
  2003年   3篇
  2002年   3篇
  2001年   6篇
  2000年   6篇
  1999年   4篇
  1998年   8篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   8篇
  1993年   5篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1977年   5篇
  1976年   1篇
  1970年   1篇
排序方式: 共有160条查询结果,搜索用时 15 毫秒
1.
Redox properties of CeO2 and Pt-Rh/CeO2 were studied by temporal analysis of products (TAP) method using alternative pulses of CO and O2. A portion of pulsed CO was oxidized to CO2 and a portion of CO was adsorbed on the surface. Pulsing 18O2 onto the catalyst which has surface species derived from CO, evolved CO2 contained no 18O suggesting that the surface species will be carbonate ions.  相似文献   
2.
Pulsed Electric Current Sintering of Silicon Nitride   总被引:1,自引:0,他引:1  
Pulsed electric current sintering (PECS) has been used to densify α-Si3N4 powder doped with oxide additives of Y2O3 and Al2O3. A full density (>99%) was achieved with virtually no transformation to β-phase, resulting in a microstructure with fine equiaxed grains. With further holding at the sintering temperature, the α-to-β phase transformation took place, concurrent with an exaggerated grain growth of a limited number of elongated β-grains in a fine-grained matrix, leading to a distinct bimodal grain size distribution. The average grain size was found to obey a cubic growth law, indicating that the growth is diffusion-controlled. In contrast, the densification by hot pressing was accompanied by a significant degree of the phase transformation, and the subsequent grain growth gave a broad normal size distribution. The apparent activation energy for the phase transformation was as high as 1000 kJ/mol for PECS, almost twice the value for hot pressing (∼500 kJ/mol), thereby causing the retention of α-phase during the densification by PECS.  相似文献   
3.
One approach in swarm robotics is homogeneous system which is embedded with sensing, computing, mobile and communication components. In this study, a target detection problem, which is one of navigation problems, was employed. Once a robot detects a target, robots immediately communicate with a base station via intermediate relay robots due to the multi-hop transmission of wireless communication. Therefore, this control task is completed with connectivity of the network. In a target detection problem, we must improve the performance of exploration as well as connectivity of the network. This study investigates the performances of the two types of random walk algorithm in navigation while loosely ensuring connectivity of the robotic network based on our previous study.  相似文献   
4.
It is well known that weld residual stress and distortion should be controlled appropriately for structural integrity. Recently, it has become much more necessary to control weld distortion to highly improve manufacturing efficiency. Various studies on control of weld distortion had been conducted based on clarification of influential dominant factors for that. The influential dominant factors had been studied from a viewpoint of temperature distribution in plate thickness section. Without considering moving the weld heat source, the temperature distribution is controlled by weld heat input (Qnet) per weld length. Angular distortion, which is controlled by temperature distribution along the direction of plate thickness (h), is controlled by heat input parameter (Qnet/h2). However, it has recently become known that the conventional results cannot be applied to all welding processes because such processes are becoming more diversified. It is significant for more accurate control of angular distortion to investigate once again the relationship between the heat input parameter and angular distortion. In this study, a series of experiments on the relationship between heat input parameter and angular distortion are carried out. The effects of welding current and welding speed are investigated individually in both TIG and MAG welding. The difference between these welding methods is also investigated. Based on the result, the effects of them are discussed in relation to temperature distribution during welding. It is considered that angular distortion is affected by temperature distribution not only in plate thickness section but also along welding direction. So, angular distortion is not always controlled by only the conventional heat input parameter because the heat input parameter is proposed as the influential dominant factor for temperature distribution in plate thickness section. It is concluded that generation characteristics of inherent strain should be considered in relation to three-dimensional temperature distributions during welding for more accurate control of angular distortion.  相似文献   
5.
Reduction or control of angular distortion without additional processes is demanded because it takes a lot of time and effort to correct the angular distortion of fillet-welded T-joints. In this study, the reduction or control of angular distortion of both sides of a fillet-welded T-joint by welding with trailing reverse-side gas heating was investigated through a welding experiment and its numerical simulation. First, the effect of gas heating position and intensity on the reduction in angular distortion was experimentally investigated using a gas burner. The results showed that angular distortion became smallest when reverse-side heating using the gas burner was located 50 mm backward of the welding torch. Also, the concentrated gas flame with increased propane and oxygen gas flow was effective for reducing angular distortion. It was clarified that the angular distortion could be controlled completely with an appropriate reverse-side gas heating condition. Next, the numerical simulation model of welding and gas heating was constructed based on comparison with the measured temperature histories and angular distortion. Through the numerical simulation of welding with a trailing reverse-side gas, more detailed understanding of the effect of gas heating condition on reduction in angular distortion was developed. In addition, it was confirmed that the gas heating position for the smallest angular distortion is dependent on the temperature distribution along the thickness of the flange plate.  相似文献   
6.
A yttria-stabilized zirconia (YSZ) thin film on an La0.8Sr0.2MnO3 porous cathode substrate was prepared, using electrophoretic deposition (EPD) to fabricate a solid oxide fuel cell (SOFC). The electrical conductivity of an La0.8Sr0.2MnO3 substrate is satisfactorily high at room temperature; therefore, YSZ powder could be deposited electrophoretically onto an La0.8Sr0.2MnO3 substrate without any extra surface treatment, such as a metal coating. Successive repetition of EPD and sintering was required to obtain a film without gas leakage, because of the thermal expansion coefficient mismatch between the YSZ and the La0.8Sr0.2MnO3 substrate. On the other hand, the electromotive force of the oxygen concentration in the cell that used YSZ film prepared via EPD increased and attained the theoretical value when the number of deposition and calcination cycles was increased. Six or more successive repetitions were required to obtain a YSZ film without gas leakage. A planar-type SOFC was fabricated, using nickel as the anode and YSZ film (∼10 μm thick) that had been deposited onto the La0.8Sr0.2MnO3 substrate as the electrolyte and cathode. The cell exhibited an open circuit voltage of 1.0 V and a maximum power density of 1.5 W/cm2. Thus, the EPD method could be used as a colloidal process to prepare YSZ thin-film electrolytes for SOFCs.  相似文献   
7.
Activity for hydrolysis of CCl2F2 (CFC12) on various metal sulfate was investigated. Zr(SO4)2 was found to be the most active while FeSO4, Cr2(SO4)3, Al2(SO4)3, La2(SO4)3 and Ce2(SO4)3 had intermediate activity. MnSO4, CoSO4, and MgSO4 showed low activity and SrSO4, CaSO4, and BaSO4 had even less activity. The major carbon containing product was CO2 and small amount of CClF3 and CO were formed over several sulfates. The crystal structure of the sulfates was stable during decomposition of CCl2F2, and the conversion reached a steady state after initial decrease at 275 °C over Zr(SO4)2 catalyst. The concentration of surface hydroxyl was larger than that over AlPO4-based catalysts and a reaction mechanism similar to that over AlPO4-based catalysts was proposed.  相似文献   
8.
Immunoglobulin G (IgG) adopts a modular multidomain structure that mediates antigen recognition and effector functions, such as complement-dependent cytotoxicity. IgG molecules are self-assembled into a hexameric ring on antigen-containing membranes, recruiting the complement component C1q. In order to provide deeper insights into the initial step of the complement pathway, we report a high-speed atomic force microscopy study for the quantitative visualization of the interaction between mouse IgG and the C1 complex composed of C1q, C1r, and C1s. The results showed that the C1q in the C1 complex is restricted regarding internal motion, and that it has a stronger binding affinity for on-membrane IgG2b assemblages than C1q alone, presumably because of the lower conformational entropy loss upon binding. Furthermore, we visualized a 1:1 stoichiometric interaction between C1/C1q and an IgG2a variant that lacks the entire CH1 domain in the absence of an antigen. In addition to the canonical C1q-binding site on Fc, their interactions are mediated through a secondary site on the CL domain that is cryptic in the presence of the CH1 domain. Our findings offer clues for novel-modality therapeutic antibodies.  相似文献   
9.
A molecular dynamics (MD) simulation of a complex of a rhinovirus protein shell referred to as a "capsid" and an anti-rhinovirus drug, WIN52084s, was performed under the rotational symmetry boundary conditions. For the simulation, the energy parameters of WIN52084s in all-atom approximations were determined by ab initio calculations using a 6-31G* basis set and the two-conformational two-stage restricted electrostatic potential fit method. The motion of WIN52084s and the capsid was focused on in the analysis of the trajectory of the simulation. The root mean square deviations of WIN52084s from the X-ray structure were decomposed to conformational, translational, and rotational components. The translation was further decomposed to radial, longitudinal, and lateral components. The conformation of WIN52084s was rigid, but moving in the pocket. The easiest path of motion for WlN52084s was on the longitudinal line, providing a track for the binding process required of the anti-rhinovirus drug to enter the pocket. The conformation of the pocket was also preserved in the simulation, although the position of the pocket in the capsid fluctuated in the lateral and radial directions.  相似文献   
10.
It has been well established that the cytoskeleton is an essential modulator of cell morphology and motility, intracytoplasmic transport and mitosis, however cytoskeletal linkage to the organelles has not been unequivocally demonstrated. Indeed, cytoskeleton appears to be essential in determining and modulating gene phenotype as a function of cellular environment. According to recent studies, the organization of the cytoskeleton network together with associated protein(s) could be essential in regulating mitochondrial function and particularly the permeability of the mitochondrial outer membrane to ADP. The aim of this chapter is to summarize the main properties of the cytoskeletal environment of mitochondria and the possible role(s) of this network in mitochondrial function in myocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号