首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   1篇
化学工业   28篇
能源动力   12篇
一般工业技术   4篇
冶金工业   2篇
  2024年   1篇
  2023年   2篇
  2021年   2篇
  2020年   1篇
  2018年   5篇
  2017年   1篇
  2014年   1篇
  2013年   5篇
  2012年   1篇
  2011年   1篇
  2009年   2篇
  2008年   6篇
  2007年   2篇
  2005年   2篇
  2004年   3篇
  2003年   3篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1994年   1篇
  1991年   1篇
排序方式: 共有46条查询结果,搜索用时 15 毫秒
1.
M. Selvaraj  S. Kawi   《Catalysis Today》2008,131(1-4):82-89
Mesoporous GaSBA-15 molecular sieves with different nSi/nGa ratios have been directly synthesized using Pluronic 123 triblock polymer as a structure-directing agent by pH-adjusting method. The mesoporous materials have been characterized using ICP-AES, XRD, N2 adsorption, 71Ga-MAS NMR, SEM and TEM. ICP-AES studies show a high amount of gallium incorporation on the silica pore walls. The structural and textural properties of calcined GaSBA-15 are characterized by XRD and N2 adsorption. 71Ga MAS NMR results demonstrate that a high amount of tetrahedral-gallium could be substituted for Si in the framework of SBA-15. TEM and FE-SEM images show the uniform pore diameter and rope-like hexagonal mesoporous structure of GaSBA-15. These GaSBA-15 materials have been used as catalysts for vapour-phase t-butylation of 1,2-dihydroxybenzene (DHB) for selective synthesis of 4-t-butylcatechol (4-TBC) under different reaction conditions. GaSBA-15(10) gave the highest 93.2% conversion of DHB and 95.7% selectivity of 4-TBC as compared with other GaSBA-15 catalysts.  相似文献   
2.
The research describes the synthesis of nanocomposite Ni@ZrO2 oxygen carriers (OCs) and lanthanide doping effect on maintaining the platelet-structure of the nanocomposite OCs. The prepared OCs were tested in chemical looping reforming of glycerol (CLR) process and sorption enhanced chemical looping reforming of glycerol (SE-CLR) process. A series of characterization techniques including N2 adsorption-desorption, X-ray diffraction (XRD), inductively coupled plasma optical emission spectrometry (ICP-OES), high resolution transmission electron microscopy (HRTEM), H2 temperature-programmed reduction (H2-TPR), H2 pulse chemisorption and O2 temperature-programmed desorption (O2-TPD) were used to investigate the physical properties of the fresh and used OCs. The results show that the platelet-stack structure of nanocomposite OCs could significantly improve the metal support interaction (MSI), thus enhancing the sintering resistance. The effect of lanthanide promotion on maintaining this platelet-stack structure increased with the lanthanide radius, namely, La3+ > Ce3+ > Pr3+ > Yb3+. Additionally, the oxygen mobility was also enhanced because of the coordination of oxygen transfer channel size by doping small radius lanthanide ions. The CeNi@ZrO2 showed a moderate ‘dead time’ of 220 s, a high H2 selectivity of 94% and a nearly complete glycerol conversion throughout a 50-cycle CLR test. In a 50-cycle SE-CLR stability test, the CeNi@ZrO2CaO showed high H2 purity of 96.3%, and an average CaCO3 decomposition percentage of 53% without external heating was achieved.  相似文献   
3.
A fixed-bed reactor was utilized to investigate the activities of six metal catalysts (1% Pt, 1% Pd, 1% Ru, 5% Co, 5% Mo and 5% W on γ-Al2O3 support) in decomposing naphthalene, based on the production of carbon dioxide and the disappearance of naphthalene. The Pt and Pd catalysts were found to exhibit higher naphthalene oxidizing activity than other catalysts tested. The Co catalysts, whose activity is similar to that of the Ru catalysts, are promising for naphthalene oxidation. The kinetic results of naphthalene oxidation over 1% Pt/γ-Al2O3 catalysts are reported for the first time. A first-order reaction with respect to Pnaphthalene was found, while the reaction order with respect to PO2 decreased with increasing reaction temperatures. A Langmuir–Hinshelwood model was used to describe the observed kinetic behavior. Oxygen adsorption dominates at higher reaction temperatures (>140 °C), and consequently the oxidation of naphthalene over the Pt catalysts appeared to be insensitive to PO2.  相似文献   
4.
An integrated reactor system which combines oxygen permeable La0.6Sr0.4Co0.8Ni0.2O3−δ (LSCN) perovskite ceramic hollow fiber membrane with Ni based catalyst has been successfully developed to produce hydrogen through oxy-CO2 reforming of methane (OCRM). Dense La0.6Sr0.4Co0.8Ni0.2O3−δ hollow fiber membrane was prepared using phase inversion-sintering method. OCRM reaction was tested from 650 °C to 800 °C with a quartz reactor packed with 0.5 g Ni/Al2O3 catalyst around the LSCN hollow fiber membrane. CH4 and CO2 were used as reactants and air as the oxygen source was fed through the bore side of the hollow fiber membrane. In order to gauge the effectiveness of this membrane reactor system, air flow was closed at 800 °C and dry reforming of methane (DRM) was tested for comparison. The results show that the oxygen fluxes of LSCN membrane swept by helium are nearly 3 times less than those swept by OCRM reactants. With increasing temperature and oxygen supply, methane conversion in the OCRM reactor reaches 100%, but CO2 conversion decreases from 87% to 72% due to the competition reaction with POM. CO selectivity is as high as nearly 100% at reaction temperatures of 700 °C–800 °C while H2 selectivity reaches a maximum of 88% at 700 °C. At 800 °C, when air supply was closed and DRM was conducted for comparison, CO selectivity decreased to 91%, resulting in carbon deposition which was around 4 times more than those obtained under OCRM reaction and H2/CO ratio decreased from 0.93 to 0.74, showing better carbon resistance and higher H2 selectivity of the Ni-based catalyst over the integrated oxygen separation-OCRM reaction across the LSCN hollow fiber membrane reactor.  相似文献   
5.
Imino hypercrosslinked polymers (NH-HCPs), amino hypercrosslinked polymers (NH2-HCPs), and carboxyl hypercrosslinked polymers (COOH-HCPs) were synthesized through cross-linking and Friedel-Crafts reactions to serve as highly efficient adsorbents for doxycycline hydrochloride (DOX) in water. These polymers, NH-HCPs, NH2-HCPs, and COOH-HCPs, exhibited specific surface areas measuring 450, 267.576, and 94.39 m2/g, respectively. The adsorption kinetics of DOX onto these polymers were consistent with the pseudo-second-order model, while the adsorption isotherms followed the Langmuir model (NH-HCPs) and Freundlich model (NH2-HCPs and COOH-HCPs), respectively. The maximum DOX adsorption capacities for NH-HCPs, NH2-HCPs, and COOH-HCPs were 166.82, 132.43, and 72.07 mg/g, respectively. Simulation results indicated that COOH-HCPs exhibited the strongest adsorption capability due to a substantial presence of oxygen and nitrogen groups on its surface, enabling the formation of hydrogen bonds with DOX. However, its actual adsorption capacity was the lowest among the polymers, indicating that structural adjustments played a more significant role in improving adsorption performance compared to functional adjustments. Adsorption experiments conducted with NH-HCPs and NH2-HCPs further supported this hypothesis. The primary DOX adsorption mechanism of NH-HCPs, NH2-HCPs, and COOH-HCPs involved the H-bonding of oxygen and nitrogen functional groups, along with other mechanisms such as π-π conjugated effects, pore-filling effects, electrostatic interactions, and acid–base interactions. Overall, this study demonstrates the effectiveness of NH-HCPs, NH2-HCPs, and COOH-HCPs in DOX removal from water, highlighting the significant influence of structural adjustments on adsorption performance.  相似文献   
6.
La0.8Sr0.2Ni0.8M0.2O3 (LSNMO) (where M = Bi, Co, Cr, Cu and Fe) perovskite catalyst precursors have been successfully developed for CO2 dry-reforming of methane (DRM). Among all the catalysts, Cu-substituted Ni catalyst precursor showed the highest initial catalytic activity due to the highest amount of accessible Ni and the presence of mobile lattice oxygen species which can activate C–H bond, resulting in a significant improvement of catalytic activity even at the initial stage of reaction. However, these Ni particles can agglomerate to form bigger Ni particle size, thereby causing lower catalytic stability. As compared to Cu-substituted Ni catalyst, Fe-substituted Ni catalyst has low initial activity due to the lower reducibility of Ni–Fe and the less mobility of lattice oxygen species. However, Fe-substituted Ni catalyst showed the highest catalytic stability due to: (1) strong metal–support interaction which hinders thermal agglomeration of the Ni particles; and (2) the presence of the abundant lattice oxygen species which are not very active for C–H bond activation but active to react with CO2 to form La2O2CO3, hence minimizing carbon formation by reacting with surface carbon to form CO.  相似文献   
7.
Alkaline earth elements (Mg, Ca and Sr) on Ni-La2O3 catalyst have been investigated as promoters for syngas production from dry CO2 reforming of methane (DRM). The catalysis results of DRM performance at 600 °C show that the Sr-doped Ni-La2O3 catalyst not only yields the highest CH4 and CO2 conversions (∼78% and ∼60%) and highest H2 production (∼42% by vol.) but also has the lowest carbon deposition over the catalyst surface. The XPS, O2-TPD, H2-TPR and FTIR results show that the excellent performance over the Sr-doped Ni-La2O3 catalyst is attributed to the presence of a high amount of lattice oxygen surface species which promotes C-H activation in DRM reaction, resulting in high H2 production. Moreover, these surface oxygen species on the Ni-SDL catalyst can adsorb CO2 molecules to form bidentate carbonate species, which can then react with the surface carbon species formed during DRM, resulting in higher CO2 conversion and lower carbon formation.  相似文献   
8.
The hydrogenation of CO2 on CeNi catalyst modified with g-C3N4 (CeNiCN) as a sacrificial and protective template was studied by in-situ DRIFTS and Kinetics experiments to investigate the influence of modification on the catalytic activity and selectivity to gain mechanistic insight. After modification, the catalyst showed higher catalytic activity and selectivity. H2-TPR, CO2-TPD, TEM and XPS confirmed that this modification could enhance the interaction of nickel and ceria and decrease the particle size of nickel, which is in favor of the dissociation of H2 and adsorption of CO2. The in-situ DRIFTS experiments demonstrated that CO2 is adsorbed on ceria sites, forming carboxylate (CO2δ?), unidentate carbonate and bicarbonates, which, in turn, react with adsorbed and dissociated H on Ni to produce formate species. Furthermore, adsorbed methoxy species were observed, which are recognized to be intermediates in the methanation process. In-situ transient DRIFTS confirm that the adsorbed CO is not a reaction intermediate, but a by-product, which originates from the decomposition of weak-binding formate species on Ce3+ sites. The unmodified catalyst has more weak-binding formate species, which are more inclined to decompose into CO accounting for the low selectivity. Furthermore, the adsorbed CO on Ce3+ sites cannot react with the adsorbed hydrogen to produce methane. Kinetics studies are consistent with a Langmuir-Hinshelwood type mechanism in which the formation of bicarbonate is the rate-determining step (RDS).  相似文献   
9.
Steam reforming of toluene as a biomass tar model compound was performed over Ni supported CaO–Al2O3 (Ca–Al) and CeO2 promoted CaO–Al2O3 (Ca–Al–Ce) catalysts to explore promotional effect of CeO2 on Ca–Al support. Among all the catalysts tested, Ni/Ca–Al–Ce(0.2) catalyst gave superior catalytic performance over other catalysts. The basic strength of catalytic supports measured by CO2 TPD and Hammett indicator methods indicates Ca–Al–Ce(0.2) support has higher surface basicity and base strength compared to Ca–Al and other Ca–Al–Ce(x) supports. Furthermore, CO pulse chemisorption results showed that Ni/Ca–Al–Ce(0.2) catalyst has a higher amount of surface metallic nickel compared to other Ni/Ca–Al–Ce catalysts. TPR analysis reveals that the redox property of CeO2 can enhance the reducibility of supported nickel species, which is further confirmed using XPS analysis, where addition of CeO2 enhanced the interaction of Ni species with Ce by reducing the interaction of Ni species with the Al support, resulting in the formation of Ni° rich surface. However, formation of bulk NiO species was also observed for the catalyst having higher amount of CeO2. TGA analysis on spent catalysts reveals that all CeO2-containing catalysts generally result in lower carbon formation rates as compared to Ni/Ca–Al catalyst.  相似文献   
10.
P. Li  S. Kawi   《Catalysis Today》2008,131(1-4):61-69
After PAMAM (polyamidoamine) dendrimers have been successfully grown in SBA-15 mesoporous materials, Wilkinson's catalyst (RhCl(PPh3)3) precursor has been tethered on these dendritic supports to produce heterogeneous catalysts for hydroformylation reaction of styrene. SBA-15 has been functionalized by two methods. In the passivation method, the silanols outside the SBA-15 pores have been passivated to preclude the rhodium precursor to be tethered outside the channels. The rhodium catalysts supported in the pore channels of this passivated SBA-15 show positive dendritic effects in enhancing the catalytic activity, regio-selectivity and stability of the catalyst by minimizing the leaching of the rhodium complex catalyst from the catalyst support to the liquid-phase media.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号