首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   4篇
化学工业   6篇
建筑科学   1篇
  2021年   1篇
  2018年   3篇
  2017年   1篇
  2015年   1篇
  2008年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
The microstructure of inorganic polymers (IP) formed from fayalite slag was investigated as a function of the composition of different activating solutions. The starting slag was 80 wt% amorphous, and after activation using sodium silicate solutions with varying SiO2/Na2O molar ratios, the amorphous phase dissolved and a binder phase was formed. The morphology of this binder, including the population and size of remnant particles and pores, was dependent on the particular activating solution used, and became denser as the level of silicate rose. 57Fe Mössbauer spectroscopy revealed that the IP synthesis reaction is combined with the oxidation of Fe2+ from the fayalite slag to Fe3+ in the inorganic polymer binder. The reaction extent varied and could be quantified using the absorption areas of these ions. Data corroborate that the Fe2+ ions in the amorphous part of the fayalite slag and the Fe3+ ions in the new binder phase had an average oxygen‐coordination number of 5.  相似文献   
2.
Slags from the nonferrous metals industry have great potential to be used as feedstocks for the production of alkali‐activated materials. Until now, however, only very limited information has been available about the structural characteristics of these materials. In the work presented herein, synthetic slags in the CaO–FeOx–SiO2 system, representing typical compositions of Fe‐rich slags, and inorganic polymers (IPs) produced from the synthetic slags by activation with alkali silicate solutions have been studied by means of X‐ray absorption near‐edge structure (XANES) spectroscopy at the Fe K‐edge. The iron in the slags was largely Fe2+, with an average coordination number of approximately 5 for the iron in the amorphous fraction. The increase in average oxidation number after alkali‐activation was conceptualized as the consequence of slag dissolution and IP precipitation, and employed to calculate the degrees of reaction of the slags. The degree of reaction of the slags increased with increasing amorphous fraction. The iron in the IPs had an average coordination number of approximately 5; thus, IPs produced from the Fe‐rich slags studied here are not Fe‐analogs of aluminosilicate geopolymers, but differ significantly in terms of structure from the latter.  相似文献   
3.
This study reports on the impact of the curing conditions on the mechanical properties and leaching of inorganic polymer (IP) mortars made from a water quenched fayalitic slag. Three similar IP mortars were produced by mixing together slag, aggregate and activating solution, and cured in three different environments for 28 d: a) at 20 °C and relative humidity (RH) ~ 50% (T20RH50), b) at 20 °C and RH≥90% (T20RH90) and c) at 60 °C and RH ~ 20% (T60RH20). Compressive strength (EN 196-1) varied between 19 MPa (T20RH50) and 31 MPa (T20RH90). This was found to be attributed to the cracks formed upon curing. Geochemical modelling and two leaching tests were performed, the EA NEN 7375 tank test, and the BS EN 12457-1 single batch test. Results show that Cu, Ni, Pb, Zn and As leaching occurred even at high pH, which varied between 10 and 11 in the tank test’s leachates and between 12 and 12.5 in the single batch’s leachates. Leaching values obtained were below the requirements for non-shaped materials of Flemish legislation for As, Cu and Ni in the single batch test.
  相似文献   
4.
Argon oxygen decarburization (AOD) slag represents more than 50 wt% of the slag from stainless steel production. Although some applications are available, e.g., as aggregates for road constructions or fertilizers, they are characterized by low economic value and limited applicability. In order to increase the economic value of AOD slag, alternative applications have been proposed, e.g., as partial or full replacement for Ordinary Portland Cement (OPC). The work presented here investigates whether the adaptation of the AOD slag chemistry within a high temperature process leads to an improvement of its hydraulic properties and thereby can demonstrate its potential to be converted into a hydraulic binder suitable for OPC replacement. For this purpose, three synthetic AOD slags with basicities (CaO/SiO2) of 2.0, 2.2, and 2.4 were synthesized, and the effect of the CaO/SiO2 ratio on the material stability, the amount of tricalcium silicate formed, and their hydraulic properties investigated. X‐ray diffraction, scanning electron microscope (SEM), and isothermal calorimetry analysis were used to characterize the microstructure and the hydraulic activity. The results show that the proposed method is indeed a promising way to stabilize a stainless steel AOD slag and convert it into a hydraulic binder.  相似文献   
5.
Today, protection of natural mineral resources depends on their reasonable use and management. Environment management is essential in understanding the complex actions between the present earth surface and the control of production in the extractive field. All branches of extractive activities and competitiveness on the global market are closely connected with the application of coherent and unitary programs for the protection of natural resources and the environment by economic agents. As in other European countries, Romania has adopted standards, laws, norms or settlements concerning not only the quality of products but also an integrated system of quality and environment management.  相似文献   
6.
Rare diseases affect a small part of the population, and the most affected are children. Because of the low availability of patients for testing, the pharmaceutical industry cannot develop drugs for the diagnosis of many of these orphan diseases. In this sense, the use of benzothiazole compounds that are highly selective and can act as spectroscopy probes, especially the compound 2-(4′-aminophenyl)benzothiazole (ABT), has been highlighted. This article reports the design of potential contrast agents based on ABT and iron to develop a new material with an efficient mechanism to raise the relaxation rate, facilitating diagnosis. The ABT/δ-FeOOH hybrid material was prepared by grafting (N-(4’-aminophenyl) benzothiazole-2-bromoacetamide) on the surface of the iron oxyhydroxide particles. FTIR spectra confirmed the material formations of the hybrid material ABT/δ-FeOOH. SEM analysis checked the covering of nanoflakes’ surfaces in relation to the morphology of the samples. The theoretical calculations test a better binding mode of compound with iron oxyhydroxide. Theoretical findings show the radical capture mechanism in the stabilization of this new material. In this context, Fe3+ ions are an electron acceptor from the organic phase.  相似文献   
7.
Three types of binders were investigated by combining a water granulated fayalite slag and three different activating solutions (NaOH, SH; Na‐silicate, SS; and a 1:1 mixture of the two, SH + SS). A reactivity test proved that the slag dissolves in the alkaline environment, releasing both Si and Al. Through rheological measurements it was found that the most alkaline solution (SH) led to a very fast structure build‐up, followed by the activating solution SS+SH; when SS was used, the storage modulus did not increase even after 2 h. A similar trend was observed by calorimetry, where the paste with SH resulted in heat release within minutes, followed by SH + SS. These transformations were also followed by in situ ATR‐FTIR, indicating changes in the vibrational bands attributed to asymmetric stretching vibration of [SiO4] with 3 or 4 NBO/Si. In the case of the sample activated with SH, a new band appeared after 96 h and continued to increase in intensity at later times. For SS + SH activating solution, a new band appeared after 96 h, increasing over time, whereas the originally present band at 940 cm?1 became more distinct. For the sample with only SS, no vibrational changes were detected after 24 h. In conclusion, the fayalite slag is a reactive material that can undergo microstructural changes toward new reaction products, with the choice of the activating solution being a crucial factor in the process.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号