首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   920篇
  免费   51篇
  国内免费   1篇
电工技术   11篇
综合类   2篇
化学工业   432篇
金属工艺   17篇
机械仪表   15篇
建筑科学   30篇
能源动力   26篇
轻工业   116篇
水利工程   7篇
石油天然气   3篇
无线电   40篇
一般工业技术   107篇
冶金工业   67篇
原子能技术   1篇
自动化技术   98篇
  2023年   15篇
  2022年   88篇
  2021年   103篇
  2020年   20篇
  2019年   20篇
  2018年   26篇
  2017年   26篇
  2016年   41篇
  2015年   40篇
  2014年   36篇
  2013年   55篇
  2012年   51篇
  2011年   72篇
  2010年   41篇
  2009年   58篇
  2008年   47篇
  2007年   33篇
  2006年   23篇
  2005年   22篇
  2004年   20篇
  2003年   16篇
  2002年   17篇
  2001年   12篇
  2000年   9篇
  1999年   10篇
  1998年   14篇
  1997年   12篇
  1996年   7篇
  1995年   1篇
  1994年   9篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1983年   3篇
  1981年   1篇
  1980年   2篇
  1979年   4篇
  1975年   1篇
排序方式: 共有972条查询结果,搜索用时 0 毫秒
1.
The synthesis of powders with controlled shape and narrow particle size distributions is still a major challenge for many industries. A continuous Segmented Flow Tubular Reactor (SFTR) has been developed to overcome homogeneity and scale‐up problems encountered when using batch reactors. Supersaturation is created by mixing the co‐reactants in a micromixer inducing precipitation; the suspension is then segmented into identical micro‐volumes by a non‐miscible fluid and sent through a tube. These micro‐volumes are more homogeneous when compared to large batch reactors leading to narrower size distributions, better particle morphology, polymorph selectivity and stoichiometry. All these features have been demonstrated on single tube SFTR for different chemical systems. To increase productivity for commercial application the SFTR is being “scaled‐out” by multiplying the number of tubes running in parallel instead of scaling‐up by increasing their size. The versatility of the multi‐tube unit will allow changes in type of precipitate with a minimum of new investment as new chemistry can be researched, developed and optimised in a single tube SFTR and then transferred to the multi‐tube unit for powder production.  相似文献   
2.

Background  

Excess body fat is a major risk factor for disease primarily due to its endocrine activity. In recent years several criteria have been introduced to evaluate this factor. Nevertheless, treatment need is currently assessed only on the basis of an individual's Body Mass Index (BMI), calculated as body weight (in kg) divided by height in m2. The aim of our study was to determine whether application of the BMI, compared to adiposity-based criteria, results in underestimation of the number of subjects needing lifestyle intervention.  相似文献   
3.
4.
The past decade revealed that cell identity changes, such as dedifferentiation or transdifferentiation, accompany the insulin-producing β-cell decay in most diabetes conditions. Mapping and controlling the mechanisms governing these processes is, thus, extremely valuable for managing the disease progression. Extracellular glucose is known to influence cell identity by impacting the redox balance. Here, we use global proteomics and pathway analysis to map the response of differentiating human pancreatic progenitors to chronically increased in vitro glucose levels. We show that exogenous high glucose levels impact different protein subsets in a concentration-dependent manner. In contrast, regardless of concentration, glucose elicits an antipodal effect on the proteome landscape, inducing both beneficial and detrimental changes in regard to achieving the desired islet cell fingerprint. Furthermore, we identified that only a subgroup of these effects and pathways are regulated by changes in redox balance. Our study highlights a complex effect of exogenous glucose on differentiating pancreas progenitors characterized by a distinct proteome signature.  相似文献   
5.
6.
7.
Summary: Syndiotactic polystyrene (sPS)/organophilic clay nanocomposites were obtained by in situ coordination‐insertion polymerization of styrene. Two cationic surfactants (alkylammonium and alkylphosphonium) were used for the intercalation of montmorillonite (MMT). For each organically modified clay, three protocols were performed using an MAO‐activated hemi‐metallocene catalyst, in order to compare the influence of experimental conditions on the composite microstructure and on its thermal stability. The microstructures of nanocomposites were investigated by wide angle X‐ray scattering and DSC. Partially exfoliated or intercalated materials were obtained in all cases and a decrease of crystallinity is observed. Thermal properties were also studied by DSC and thermogravimetric analysis. The presence of clay does not have a strong influence on the sPS thermal transitions but the thermal decomposition process of the material was slowed down in the presence of few organoclay percents, particularly in the degradation beginning. The influence of these two organically modified clays on the thermal stability of the material is discussed.

Gel and suspension formed from the combination of cloisite with toluene (left) and styrene (right), respectively.  相似文献   

8.
Homogeneous (Cu2+ ions) and heterogeneous (Cu2+-pillared clay) Fenton-like catalysts have been compared in the conversion of p-coumaric acid. The performances of the two classes of catalysts are similar for an analogous amount of copper, but there are some relevant differences in terms of (i) the presence of an induction time, (ii) the turnover frequency, (iii) the efficiency in the use of H2O2, (iv) the initial attack of p-coumaric acid (hydroxylation on the aromatic ring or oxidative attack on the double bond of the lateral chain), and (v) the effect of dissolved oxygen on the removal of total organic carbon (TOC). These differences were interpreted in terms of reaction network of generation of radical oxygen species and of organics conversion. The possible formation of a surface peroxo adduct coordinated to a copper binulcear site was also evidenced for the solid heterogeneous catalyst.  相似文献   
9.
A systematic reactivity study of N2O, NO, and NO2 on highly dispersed CuO phases over modified silica supports (SiO2–Al2O3, SiO2–TiO2, and SiO2–ZrO2) has been performed. Different reaction paths for the nitrogen oxide species abatement were studied: from direct decomposition (N2O) to selective reductions by hydrocarbons (N2O, NO, and NO2) and oxidation (NO to NO2). The oxygen concentration, temperature, and contact time, were varied within suitable ranges in order to investigate the activity and in particular the selectivity in the different reactions studied. The support deeply influenced the catalytic properties of the active copper phase. The most acidic supports, SiO2–Al2O3 and SiO2–ZrO2, led to a better activity and selectivity of CuO for the reactions of N2O, NO, and NO2 reductions and N2O decomposition than SiO2–TiO2. The catalytic results are discussed in terms of actual turnover frequencies starting from the knowledge of the copper dispersion values.  相似文献   
10.
The phase behavior of binary blends of acrylonitrile/methyl acrylate/butadiene terpolymer (B210) and poly(ethylene-co-maleic anhydride) (PEMA) was examined based on thermal analysis and optical microscopy. Miscibility of these polymer blends was recognized over a wide range of compositions. The appearance of phase separation during subsequent heatings above the glass transition temperature (Tg) of these blends was associated with a lower critical solution temperature (LCST) behavior. Rheological characteristics such as shear storage modulus (G′), loss modulus (G″) and complex viscosity have been shown to depend on the amount of PEMA in the blend. Mechanical properties including the tensile strength and flexural modulus also were found to be related to the composition of the blend. © 1993 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号