首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
化学工业   5篇
机械仪表   5篇
一般工业技术   1篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   3篇
  2017年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
Butterfly wings have complex structure lending it several interesting properties. Coloration of the wing is one of the first things to encounter and the overall visual effect is in fact influenced by several factors. Chemical pigments set the base color of the wing, topographical structures on the wing scales cause color shift by interference and their arrangement into diffraction grating causes iridescence. The thin film interference can be attributed to microscopic ridges covering wing scales. Observation and calculation of the color shift on wings of Euploea mulciber species using Fourier transform of images obtained by atomic force microscopy is the focus of this article.  相似文献   
2.
Silicon - The purpose of this work is study of silicon single crystal wafer thermal stability in correlation with three-dimensional (3D) surface characterization using atomic force microscopy...  相似文献   
3.
This work shows for the first time the possibility to sinter BCZT powder compacts by rapid heating rates within one hour of sintering, while achieving good piezoelectric properties. The sintering was performed by rapid (heating rates 100 and 200 °C/min) pressure-less sintering (PLS) at 1550 °C/5-60 min and by SPS sintering (100 °C/min, 1450 °C/5?60 min and 1500 °C/15?45 min). The rapid PLS samples reached a relative density up to 94 % and grain sizes of 17–36 μm acquiring d33 up to 414 pC/N. Although the SPS samples reached full density at 1450 °C, their piezoelectric properties worsened due to smaller grains (10?15 μm) as well as formation of cracks at dwell times > 30 min. At elevated SPS temperature of 1500 °C/30 min, the d33 increased to 360 pC/N sustaining full density. Even higher increase in d33 (424 pC/N) of SPS samples was achieved by post-rapid PLS at 1550 °C/60 min resulting from further expansion in grain size.  相似文献   
4.
Thin films of bismuth and iron oxides were obtained by atomic layer deposition (ALD) on the surface of a flexible substrate poly(4,4′-oxydiphenylene-pyromellitimide) (Kapton) at a temperature of 250°C. The layer thickness was 50 nm. The samples were examined by secondary-ion mass spectrometry, and uniform distribution of elements in the film layer was observed. Surface morphology, electrical polarization, and mechanical properties were investigated by atomic force microscope, piezoelectric force microscopy, and force modulation microscopy. The values of current in the near-surface layer varied in the range of ±80 pA when a potential of 5 V was applied. Chemical analysis was performed by X-ray photoelectron spectroscopy, where the formation of Bi2O3 and Fe2O3 phases, as well as intermediate phases in the Bi–Fe–O system, was observed. Magnetic measurements were carried out by a vibrating sample magnetometer that showed a ferromagnetic response. The low-temperature method of functionalization of the Kapton surface with bismuth and iron oxides will make it possible to adapt the Bi–Fe–O system to flexible electronics.  相似文献   
5.
Stach  Sebastian  Ţălu  Ştefan  Dallaev  Rashid  Arman  Ali  Sobola  Dinara  Salerno  Marco 《SILICON》2020,12(11):2563-2570
Silicon - The morphological stability of silicon single crystal wafers was investigated, after performing cleaning surface treatments based on moderate temperature annealing and plasma sputtering....  相似文献   
6.
Fractal concepts are used to explore how different energies (10, 20 and 50 keV) and fluence of 5 × 1017 N+ cm?2 affect the morphology of nickel thin film. The nickel thin film with thickness of 100 nm is prepared by electron beam evaporation technique at room temperature on stainless steel (AISI 316) substrates. The nanoscale three‐dimensional (3‐D) surface micro‐morphologies are investigated by atomic force microscopy (AFM). Interface width is used to describe the surface height fluctuations. The autocorrelation function with height‐height correlation function give the quantitative data about the morphology of surface. The value of roughness exponent and fractal dimension is computed by height‐height correlation function. Fractal measure is an important analysis which provides fundamental insights into the texture characteristics and a direct way of testing their functional role.  相似文献   
7.
Modern day pencil lead is a material of many possibilities. Manufacture process is fast, easy, and well established, yet the full potential of its use still remains to be uncovered. Graphite content ratio to binding clays determines basic properties of the lead like its toughness and color, but more interesting qualities like conductivity and reactivity as well. Properly employed electrochemical etching with a bubble membrane creates sharp and smooth graphite tips, which can be, given enough graphite content, used as probes in several measurement techniques. Observing and adjusting the tip creation process and the results for use in further research are the objectives of this paper.  相似文献   
8.
A comprehensive study on energy harvesting characteristics as well as electro-mechanical properties of lead-free (1−x)(BaZr0.2Ti0.8)O3x(Ba0.7Ca0.3Ti)O3 ceramics were systematically carried out. Raman and Rietveld analyses show a formation of rhombohedral-orthorhombic-tetragonal (R-O-T) phase boundary region between 4/6 BZT/BCT and 6/4 BZT/BCT compositional range. Raman modes shift toward lower frequencies with increased Zr/Ca stoichiometric ratio attributed to asymmetric Ti-O phonon vibrations, which caused local disorder, widening of energy band and reduced Curie temperature. The large mechanical quality factor Qm = 556 is related to the hardening effect and significantly high energy conversion efficiency η = 96% was discovered for 3/7 BZT/BCT composition. Largely, the noblest electro-mechanical properties were retrieved for 5/5 BZT/BCT ceramics, in which d33 = 500 pC/N (from quasi-static d33 meter), d33 = 540 pm/V (from field-dependent d33 curves) indicating that the both methods are analogous with a deviation of 8%. The outstanding energy harvesting characteristics such as voltage constant g33 = 27 × 10−3 Vm/N, transduction coefficient d33 × g33 = 13 301 × 10−15 m2/N, figure of merit under off-resonance conditions FOMoff = 12.1 × 10−10 m2/N and fairly large η of 94% were attained again for 5/5 BZT/BCT ceramics. These outstanding characteristics were ascribed to the R-O-T phase boundary region that comprises a low energy barrier, consequently facilitated easy polarization rotation and triggered an increased electro-mechanical conversion. These characteristics outperform other lead-free and even most commercially available lead-based ceramics, and thus suitable for sensors, actuators, resonators, and energy harvesting applications.  相似文献   
9.
We report a large piezoelectric constant (d33), 720 pC/N and converse piezoelectric constant (d33*), 2215 pm/V for 0.55(Ba0.9Ca0.1)TiO3-0.45Ba(Sn0.2Ti0.8)O3 ceramics; the biggest value achieved for lead-free piezoceramics so far. The ceramic powders were calcined between 1050°C-1350°C and sintered at 1480°C. The best properties were obtained at a calcination temperature (CT) of 1350°C. The fitting combination of processing and microstructural parameters for example, initial powder particle size >2 µm, ceramics density ~95%, and grain size ~40 µm led to a formation of orthorhombic-tetragonal-pseudo-cubic (O-T-PC) mixed phase boundary near room temperature, supported by Raman spectra, pointed to the extremely high piezoelectric activity. These conditions significantly increase piezoelectric constants, together with high relative permittivity (εr) >5000 and a low loss tangent (tan δ) of 0.029. In addition, the d33 value stabilizes in the range of 400-500 pC/N for all samples calcined between 1050°C and 1250°C. The results entail that the (Ba,Ca)(Sn,Ti)O3 ceramics are strong contenders to be a substitute for lead-based materials for room temperature applications.  相似文献   
10.
The purpose of this work is to study the dependence of AFM‐data reliability on scanning rate. The three‐dimensional (3D) surface topography of the samples with different micro‐motifs is investigated. The analysis of surface metrics for estimation of artifacts from inappropriate scanning rate is presented. Fractal analysis was done by cube counting method and evaluation of statistical metrics was carrying out on the basis of AFM‐data. Combination of quantitate parameters is also presented in graphs for every measurement. The results indicate that the sensitivity to scanning rate growths with fractal dimension of the sample. This approach allows describing the distortion of the images against scanning rate and could be applied for dependences on the other measurement parameters. The article explains the relevance and comparison of fractal and statistical surface parameters for characterization of data distortion caused by inappropriate choice of scanning rate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号