首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   0篇
电工技术   6篇
综合类   1篇
化学工业   28篇
金属工艺   1篇
机械仪表   1篇
建筑科学   2篇
能源动力   6篇
轻工业   17篇
水利工程   2篇
石油天然气   1篇
无线电   1篇
一般工业技术   14篇
冶金工业   1篇
原子能技术   1篇
自动化技术   4篇
  2023年   1篇
  2022年   4篇
  2021年   8篇
  2020年   5篇
  2019年   8篇
  2018年   6篇
  2017年   11篇
  2016年   4篇
  2015年   5篇
  2014年   3篇
  2013年   9篇
  2012年   4篇
  2011年   10篇
  2010年   5篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
排序方式: 共有86条查询结果,搜索用时 46 毫秒
1.
We fabricated novel ternary nanocomposites through integration of C-dots (carbon dots), BiOCl, and nanosheets of graphitic carbon nitride (g-C3N4 nanosheets) by a cost-effective route. The fabricated photocatalysts were subsequently characterized by XRD, EDX, TEM, HRTEM, XPS, FT-IR, UV-vis DRS, TGA, BET, and PL methods to gain their structure, purity, morphology, optical, textural, and thermal properties. In addition, the degradation intermediates were identified by gas chromatography-mass spectroscopy (GC-MS). Photocatalytic performance of the synthesized samples was studied by photodegradations of three cationic (RhB, MB, and fuchsine), one anionic (MO) dyes, one colorless (phenol) pollutant and removal of an inorganic pollutant (Cr(VI)) under visible light. It was revealed that the ternary nanocomposite with loading 20% of BiOCl illustrated superlative performances in the selected photocatalytic reactions compared with the corresponding bare and binary photocatalysts. Visible-light photocatalytic activity of the g-C3N4 nanosheets/CDs/BiOCl (20%) nanocomposite was 42.6, 27.8, 24.8, 20.2, and 15.9 times higher than the pure g-C3N4 for removal of RhB, MB, MO, fuchsine, and phenol, respectively. Likewise, the ternary photocatalyst showed enhanced activity of 15.3 times relative to the g-C3N4 in photoreduction of Cr(VI). Moreover, the ternary nanocomposite exhibited excellent chemical stability and recyclability after five cycles. Finally, the mechanism for improved photocatalytic performance was discussed based on the band potential positions.  相似文献   
2.
Residual monomer is an important factor, particularly in hygienic materials such as superabsorbent polymer (SAP) hydrogels. Recently, we reported different approaches to minimizing residual monomer content in SAPs. In this paper, the effect of a long-chain monomer, poly(ethylene glycol) methylether methacrylate (PEG.MEMA), on the residual monomer content of SAP networks of partially neutralized acrylic acid–PEG.MEMA is investigated. The aim of using PEG.MEMA in SAP synthesis was to reduce the glass transition temperature (T g) of SAP. As the temperature that is conventionally used to dry SAP (70–110 °C) is lower than the T g of ordinary SAPs, the polymer is in the glassy state during the heating stage. It was assumed that converting SAP from the glassy state to the rubbery state during drying would facilitate the removal of acrylic acid monomer (AA) from the gel, thus reducing the residual monomer content. The results showed that the use of PEG.MEMA led to a reduction in residual AA when the drying temperature was 100 °C. The residual AA was decreased from 169 to 95 ppm when the drying time was increased from 3 to 15 hours at 100 °C. This positive effect of PEG.MEMA on the level of unwanted residual AA became insignificant at a higher drying temperature (140 °C). The effects of PEG.MEMA content on the thermal and mechanical properties (in the dried state) and the rheological properties (in the water-swollen state) of the SAP hydrogels were also investigated. The swelling capacity and rate was studied in relation to the PEG.MEMA content. It was found that a high level of PEG.MEMA restricted both the absorption capacity and the rate of water absorption.  相似文献   
3.
4.
A two-dimensional non-isothermal mathematical model has been developed for the ethane dehydrogenation reaction in a fixed-bed catalytic membrane reactor. Since ethane dehydrogenation is an equilibrium reaction, removal of produced hydrogen by the membrane shifts the thermodynamic equilibrium to ethylene production. For further displacement of the dehydrogenation reaction, oxidative dehydrogenation method has been used. Since ethane dehydrogenation is an endothermic reaction, the energy produced by the oxidative dehydrogena-tion method is consumed by the dehydrogenation reaction. The results show that the oxidative dehydrogenation method generated a substantial improvement in the reactor performance in terms of high conversions and significant energy saving. It was also established that the sweep gas velocity in the shell side of the reactor is one of the most important factors in the effectiveness of the reactor.  相似文献   
5.
The geometries, interaction energies, and bonding properties of cationic chalcogen bonds are studied in binary complexes XF2Y+?NCZ (X═H, CN, F; Y═S, Se; Z═H, Cl, Br). The nature of these interactions is studied by a vast number of methods, including molecular electrostatic potential (MEP), Noncovalent Interaction Index (NCI), quantum theory of atoms in molecules (QTAIM), and natural bond orbital (NBO) analyses. The interaction energies of these complexes vary between ?20.94?kcal/mol in HF2S+?NCH and ?33.72?kcal/mol in F3Se+?NCBr. According to the QTAIM analysis, all these cationic chalcogen bonds are classified as a closed-shell interaction with a partial covalent character. Moreover, cooperative effects between cationic chalcogen bond and hydrogen or halogen bond interactions are studied in ternary XF2Y+?NCZ?NH3 complexes. These cooperative effects are analyzed in terms of the parameters derived from the QTAIM and NBO analyses, and electron density difference plots.  相似文献   
6.
A successful design, previously adapted for treatment of complex wastewaters in a microbial fuel cell (MFC), was used to fabricate two MFCs, with a few changes for cost reduction and ease of construction. Performance and electrochemical characteristics of MFCs were evaluated in different environmental conditions (in complete darkness and presence of light), and different flow patterns of batch and continuous in four hydraulic retention times from 8 to 30 h. Changes in chemical oxygen demand, and nitrate and phosphate concentrations were evaluated. In contrast to the microbial fuel cell operated in darkness (D-MFC) with a stable open circuit voltage of 700 mV, presence of light led to growth of other species, and consecutively low and unsteady open circuit voltage. Although the performance of theMFC subjected to light (L-MFC)was quite lowand unsteady in dynamic state (internal resistance = 100 Ω, power density = 5.15 W·m-3), it reached power density of 9.2 W·m-3 which was close to performance of D-MFC (internal resistance = 50 Ω, power density = 10.3 W·m-3). Evaluated only for D-MFC, the coulombic efficiency observed in batch mode (30%) was quite higher than the maximum acquired in continuous mode (9.6%) even at the highest hydraulic retention time. In this study, changes in phosphate and different types of nitrogen existing in dairy wastewater were investigated for the first time. At hydraulic retention time of 8 h, the orthophosphate concentration in effluent was 84% higher compared to influent. Total nitrogen and total Kjeldahl nitrogen were reduced 70% and 99% respectively at hydraulic retention time of 30 h, while nitrate and nitrite concentrations increased. The microbial electrolysis cell (MEC), revamped from D-MFC, showed the maximum gas production of 0.2 m3 H2·m-3·d-1 at 700 mV applied voltage.  相似文献   
7.
In an attempt to develop nanostructured photocatalysts with high performance, SrTiO3/Ag3PO4 hetero-nanostructures were successfully fabricated. The formed binary heterojunctions were composed of SrTiO3 nanotubes prepared using liquid-phase deposition, and Ag3PO4 nanoparticles prepared using a sol–gel method. Synthesis details, including morphology, structure, and optical properties of the prepared photocatalysts, were characterized and comparatively discussed. The results showed that at an optimal ratio of SrTiO3 to Ag3PO4 (20–80), the photocatalytic degradation of Basic Blue 41 under 80-min visible light irradiation is the maximum amount of 99%, which is about 4.4 and 1.5 times higher than that of pristine SrTiO3 nanorods and Ag3PO4 nanoparticles, respectively. It can be due to the synergistic effect of two materials that provide high light absorption and charge carriers’ separation. Finally, a detailed possible mechanism for enhancing the photocatalytic activity of the SrTiO3/Ag3PO4 hetero-nanostructures was proposed.  相似文献   
8.
Elucidation of the molecular mechanism of silver nanoparticle (AgNP) synthesis is necessary to control nanoparticle size, shape, and monodispersity. In this study, the mechanism of AgNP formation by Neurospora intermedia was investigated. The higher production rate of AgNP formation using a culture supernatant heat‐treated at 100° and 121°C relative to that with an un‐treated culture supernatant indicated that the native form of the molecular species is not essential. The effect of the protein molecular weight (MW) on the nanoparticle size distribution and average size was studied by means of ultraviolet–visible spectroscopy and dynamic light scattering. Using un‐treated and concentrated cell‐free filtrate passed through 10 and 20 kDa cut‐off filters led to the production of AgNPs with average sizes of 25, 30, and 34 nm, respectively. Also, using the permeate fraction of cell‐free filtrate passed through a 100 kDa cut‐off filter led to the formation of the smallest nanoparticles with the narrowest size distribution (average size of 16 nm and polydispersity index of 0.18). Sodium dodecyl sulphate polyacrylamide gel electrophoresis analysis of the fungal extracellular proteins showed two notable bands with the MWs of 15 and 23 kDa that are involved in the reduction and stabilisation of the nanoparticles, respectively.Inspec keywords: silver, nanoparticles, nanofabrication, proteins, molecular weight, ultraviolet spectra, visible spectra, cellular biophysics, electrophoresis, molecular biophysicsOther keywords: Neurospora intermedia, molecular mechanism, silver nanoparticle synthesis, nanoparticle shape, nanoparticle monodispersity, AgNP formation, untreated culture supernatant, molecular species, protein molecular weight, MW, nanoparticle size distribution, ultraviolet‐visible spectroscopy, dynamic light scattering, untreated cell‐free filtrate, concentrated cell‐free filtrate, cut‐off filters, permeate fraction, polydispersity index, Sodium dodecyl sulphate polyacrylamide gel electrophoresis analysis, fungal extracellular proteins, nanoparticle reduction, nanoparticle stabilisation, temperature 100 degC, temperature 121 degC, size 25 nm, size 30 nm, size 34 nm, size 16 nm, Ag  相似文献   
9.
Cu-P-silicon carbide(SiC)composite coatings were deposited by means of electroless plating.The effects ofpH values,temperature,and different concentrations of sodium hypophosphite(NaH2PO2·H2O),nickel sulfate(NiSO4·6H2O),sodium citrate(C6H5Na3O7·2H2O)and SiC on the deposition rate and coating compositions were evaluated,and the bath formulation for Cu-P-SiC composite coatings was optimised.The coating compositions were determined using energy-dispersive X-ray analysis(EDX).The corresponding optimal operating parameters for depositing Cu-P-SiC are as follows:pH 9; temperature,90℃; NaH2PO2·H2O concentration,125 g/L; NiSO4·6H2O concentration,3.125 g/L; SiC concentration,5 g/L; and C6H5Na3O7·2H2O concentration,50 g/L.The surface morphology of the coatings analysed by scanning electron microscopy(SEM)shows that Cu particles are uniformly distributed.The hardness and wear resistance of Cu-P composite coatings are improved with the addition of SiC particles and increase with the increase of SiC content.  相似文献   
10.
An electroless deposition process was used to synthesize the nanostructured zinc oxide (ZnO)–activated carbon (AC) as supercapacitor. The composite oxide was studied by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction analysis (XRD). The electrochemical performance of the nanocomposite was analyzed through cyclic voltammetry (CV) and AC impedance spectroscopy (EIS) in 0.1 M Na2SO4 as electrolyte. A specific capacitance 187 F g?1 at a scan rate of 5 mV s?1 was obtained using cyclic voltammetry (CV) and a nearly rectangular shaped CV curve was observed for the composite oxide. The supercapacitor was quite stable during charge–discharge cycling and exhibited constant capacitance during the long-term cycling. It also yielded a specific capacitance 171 F g?1 at 5 mA cm?2 with a high energy density of 21.9 Wh kg?1 and 4.2 kW kg?1 of power density. Due to unique structure of prepared ZnO–AC nanocomposite, it is a promising candidate for supercapacitor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号