首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学工业   3篇
  2013年   1篇
  2011年   1篇
  2005年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
The presence of weldlines in rubber products is regarded as a one of the most undesirable phenomena, since it results in poor mechanical properties. Compression molding of large or complicated products are prepared by multiple charges, which produces weldlines once the melt fronts are joined by the impingement flow. In this work, the effects of curing systems, processing parameters, filler types, and contents on weldline strength of compression molded natural rubber (NR) were investigated. Furthermore, the effects of curing systems on the aging properties of NR vulcanizates were studied in details. The results show that an increased amount of calcium carbonate does not affect the weldline strength. However, the difference in tensile strength between weldline and nonweldline specimens becomes larger with the high loading of silica and carbon black. In addition, for the factors selected in the experiments, clamping pressure, and curing system were found to be the principal factors affecting the weldline property of vulcanizates. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   
2.
This article demonstrates using sandwich injection molding in order to improve the mechanical properties of short glass fiber‐reinforced thermoplastic parts by investigating the effect of fiber orientation, phase separation, and fiber attrition compared to conventional injection molding. In the present case, the effect of short glass fiber content (varying from 0–40 wt%) within the skin and core materials were studied. The results show that the mechanical properties strongly depend not only on the fiber concentration, but also on the fiber orientation and the fiber length distribution inside the injection‐molded part. Slight discrepancies in the findings can be assumed to be due to fiber breakage occurring during the mode of processing. POLYM. COMPOS., 26:823–831, 2005. © 2005 Society of Plastics Engineers  相似文献   
3.
In sandwich injection molding, two polymeric materials are sequentially injected into a mold to form a multilayer product with a skin and core structure. Different properties of these polymers and their distribution in the cavity greatly affect the applications of the moldings. In an ideal situation, the core material should be entirely encapsulated in the skin material. When the flow front of the core material overtakes that of the skin material, breakthrough occurs, resulting in a defective part. The focus of this study is to determine the effect of molding parameters on the skin/core material distribution. The commercial simulation package (Moldflow) has been extensively compared with experiments. Both simulated and measured results suggest that in order to obtain the optimum encapsulated skin/core structure in the sandwich injection molded parts, it is necessary to select a proper core volume fraction and suitable processing parameters. A good agreement between simulation and experimental results indicates that the Moldflow program can be used as a valuable tool for the prediction of melt-flow behavior during the sandwich injection process.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号