首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   3篇
电工技术   1篇
化学工业   19篇
金属工艺   1篇
机械仪表   3篇
能源动力   9篇
轻工业   9篇
无线电   13篇
一般工业技术   34篇
冶金工业   3篇
原子能技术   1篇
自动化技术   15篇
  2023年   1篇
  2022年   5篇
  2021年   8篇
  2020年   3篇
  2019年   6篇
  2018年   9篇
  2017年   4篇
  2016年   1篇
  2015年   2篇
  2014年   5篇
  2013年   3篇
  2012年   5篇
  2011年   10篇
  2009年   7篇
  2008年   5篇
  2007年   5篇
  2006年   6篇
  2005年   5篇
  2004年   1篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  1998年   3篇
  1997年   1篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
排序方式: 共有108条查询结果,搜索用时 140 毫秒
1.
A comparative study of gas sensing behavior of nanocrystalline nickel ferrite synthesized by micro-emulsion and hydrothermal method to liquefied petroleum gas (LPG) is presented. Nanocrystalline nickel ferrite synthesized by hydrothermal method indicated higher electrical conductivity and gas sensitivity at low operating temperature compared to nanocrystalline nickel ferrite synthesized by reverse micelle technique. This difference in the gas sensing behavior can be attributed to the presence of more oxygen vacancies (i.e. non-stoichiometry) in the hydrothermally synthesized nickel ferrite. Incorporation of palladium had a catalytic effect and the operating temperature was significantly reduced in both the samples. The higher operating temperature of the reverse micelle nickel ferrite material makes the sensor response speed faster (∼10 s) compared to the hydrothermally synthesized material (∼1 min).  相似文献   
2.
This paper reports a method to produce networks of crystalline gallium oxide comprised of one‐dimensional (1D) nanostructures. Because of the unique arrangement of wires, these crystalline networks are termed as ‘nanowebs’. Nanowebs are of great technological interest since they contain wire densities of the order of 109 cm–2. A possible mechanism for the fast self‐assembly of crystalline metal oxide nanowires involves multiple nucleation and coalescence via oxidation–reduction reactions at the molecular level. The preferential growth of nanowires parallel to the substrate enabled them to coalesce into regular polygonal networks. The individual segments of the polygonal network consist of both nanowires and nanotubules of β‐gallium oxide. Individual wire properties contribute to a nanoweb’s overall capacity and the implications for devices based on nanowebs are expected to be enormous.  相似文献   
3.
Theoretical predictions using a modified radical species ternary diagram for C–H–O system indicate that addition of sulfur expands the C–H–O gas phase compositional window for diamond deposition. Sulfur addition to no-growth domain increases the carbon super-saturation by binding the oxygen and the addition of sulfur to the non-diamond domain reduces the heavy carbon super-saturation by decreasing CnHm species concentration in the gas phase. The overall effect of sulfur addition to gas phase mixtures is characterized as that of oxygen addition to the C–H system, i.e. expansion of the compositional window over which diamond can be deposited from the gas phase. In addition, the increasing sulfur concentration to diamond domain feed gases beyond 2000 ppm did not affect the steady state gas phase composition but the quality of diamond was reduced.  相似文献   
4.
Ru-doped nanostructured carbon films   总被引:1,自引:0,他引:1  
Pure and Ru-doped carbon films are deposited on Si (100) substrates by electron cyclotron resonance chemical vapor deposition. The films are characterized by transmission electron microscopy, electron energy loss spectroscopy, energy dispersive X-ray spectroscopy and atomic force microscopy. In both the pure and Ru-doped samples, diamond nanocrystallites are formed in amorphous carbon matrices. The Ru-doped film contains much smaller diamond nanocrystallites (approx. 3 nm) than the pure samples (approx. 11 nm). Lower surface roughnesses are observed in both pure and Ru-doped samples as compared to other reported nanocrystalline diamond films. The conductivity of the Ru-doped film is significantly higher than that of the pure film. The results show that Ru-doped nanocrystalline diamond films have unique structures and properties as compared to pure nanocrystalline diamond films or metal doped diamond-like carbon films, which may offer advantages for electrochemical, optical-window, field emission or tribological applications.  相似文献   
5.
6.
Spherical iron-carbon nanocomposites were developed through a facile aerosol-based process with sucrose and iron chloride as starting materials. These composites exhibit multiple functionalities relevant to the in situ remediation of chlorinated hydrocarbons such as trichloroethylene (TCE). The distribution and immobilization of iron nanoparticles on the surface of carbon spheres prevents zerovalent nanoiron aggregation with maintenance of reactivity. The aerosol-based carbon microspheres allow adsorption of TCE, thus removing dissolved TCE rapidly and facilitating reaction by increasing the local concentration of TCE in the vicinity of iron nanoparticles. The strongly adsorptive property of the composites may also prevent release of any toxic chlorinated intermediate products. The composite particles are in the optimal range for transport through groundwater saturated sediments. Furthermore, those iron-carbon composites can be designed at low cost, the process is amenable to scale-up for in situ application, and the materials are intrinsically benign to the environment.  相似文献   
7.
Tungsten oxide (WO3) nanowire array samples were nitrided in a NH3 atmosphere to get complete conversion to tungsten nitride (W2N) nanowires. UV–vis absorption spectroscopy shows that the band gap of WO3 reduced from 2.9 eV to 2.2 eV after nitridation to W2N. Photoelectrochemical properties of both WO3 and W2N nanowire array electrodes were investigated. WO3 nanowire arrays show maximum incident photon-to-current conversion efficiency of 85% at 370 nm at 1.2 V vs. SCE. The high quantum efficiency is attributed to the nanowire architecture which ensures efficient light absorption and charge transport. The nanowire arrays were stable even up to 8 h of continuous gas evolution. W2N nanowire arrays showed good photoactivity even at moderate bias. However, the pure W2N electrodes were unstable with respect to photocorrosion. The mixed phase W2N–WO3 nanowires showed improvement in stability compared to pure W2N nanowire arrays.  相似文献   
8.
Sulfonated‐p‐cresol (SPC) was used as novel dopant for the first time in the synthesis of polyaniline in 3D nanofiber networks (PANI‐3D). Polyaniline in 3D nanofiber network was prepared using organic solvent soluble benzoyl peroxide as oxidizing agent in presence of SPC and sodium lauryl sulfate (SLS) surfactant via inverted emulsion polymerization pathway. The influence of synthesis conditions such as the concentration of the reactants, stirring/static condition, and temperature etc., on the properties and formation of polyaniline nanofiber network were investigated. Polyaniline in 3D nanofiber network with 40–160 nm (diameter), high yield (134 wt % with respect to aniline used), and reasonably good conductivity (0.1 S/cm) was obtained in 24 h time. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
9.
Conical carbon nanotube (CCNT) arrays were synthesized over a large area of approximately 1 cm2 or more on graphite and tungsten foil substrates. Experimental observations reveal that nucleation is caused by catalyst metal cluster in the initial stages, but the tapered morphology occurs due to the difference in the rates of vertical growth by attachment carbon atoms at edges of growing graphene sheets and radial growth with epitaxial nucleation of new graphene layers near bottom at the substrate. The above mechanism is supported through re-growth experiments on straight multi-walled nanotubes and growth kinetics data, which suggest a linear relationship between the growth rate and ratio of diameter to length (d/l) of CCNT.  相似文献   
10.
The photoinitiated bulk polymerization process, which has been used recently in the manufacture of solid optical diffraction filters, is examined to understand the dynamics of both the crystalline colloidal arrays (CCA) and the host monomer species. Our analysis indicates that volume shrinkage of the monomer, changes in the dielectric properties of the monomer, and inhomogeneities of polymerization reaction rate across the dispersion during the polymerization process, are the major contributors for observed lattice compression and lattice disorder of the CCA of silica spheres in polymerized acrylic/methacrylic ester films. The effect of orientation of photocell with respect to the radiation source on Bragg diffraction of CCA indicated the presence of convective stirring in the thin fluid system during the photopolymerization that deleteriously affects the periodic array structures. To devise reproducible and more efficient optical filters, experimental methods to minimize or eliminate convective instabilities in monomeric dispersions during polymerization are suggested. © 1998 Chapman & Hall  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号