首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学工业   4篇
一般工业技术   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
排序方式: 共有5条查询结果,搜索用时 93 毫秒
1
1.
2.
One of the promising avenues for biomass processing is the use of water as a reaction medium for wet or aquatic biomass. This review focuses on the hydrothermal catalytic production of fuels and chemicals from aquatic biomass. Two different regimes for conversion of aquatic biomass in hydrothermal conditions are discussed in detail. The first is hydrothermal liquefaction, and the second is hydrothermal gasification. The goals of these processes are to produce liquid‐fuel‐range hydrocarbons and methane or hydrogen, respectively. The catalytic upgrading of biocrude resulting from noncatalytic liquefaction and the stability and degradation of catalysts in high temperature water are also discussed. The review concludes with a brief discussion of the outlook for and opportunities within the field of hydrothermal catalytic valorization of biomass. Copyright © 2012 Society of Chemical Industry  相似文献   
3.
4.
Recent years have seen a renewed interest in the harvesting and conversion of solar energy. Among various technologies, the direct conversion of solar to chemical energy using photocatalysts has received significant attention. Although heterogeneous photocatalysts are almost exclusively semiconductors, it has been demonstrated recently that plasmonic nanostructures of noble metals (mainly silver and gold) also show significant promise. Here we review recent progress in using plasmonic metallic nanostructures in the field of photocatalysis. We focus on plasmon-enhanced water splitting on composite photocatalysts containing semiconductor and plasmonic-metal building blocks, and recently reported plasmon-mediated photocatalytic reactions on plasmonic nanostructures of noble metals. We also discuss the areas where major advancements are needed to move the field of plasmon-mediated photocatalysis forward.  相似文献   
5.
We demonstrate that supported Sn/Ni alloy catalyst is more resistant to deactivation via carbon deposition than supported monometallic Ni catalyst in steam reforming of isooctane at moderate steam to carbon ratios, irrespective of the average size of metal particles and the metal loading. The experiments were performed for average diameters of catalytic particles ranging from 30 to 500 nm and for the loading of active material ranging from 15 to 44 wt% with respect to the total mass of catalyst. The steam reforming reactions were performed at conditions that are consistent with typical solid oxide fuel cell (SOFC) operating conditions. DFT calculations show that the reasons for the enhanced carbon-tolerance of Sn/Ni compared to monometallic Ni are high propensity of Sn/Ni to oxidize carbon and lower driving force to form carbon deposits on low-coordinated metal sites.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号