首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
化学工业   2篇
能源动力   2篇
一般工业技术   2篇
自动化技术   1篇
  2021年   1篇
  2018年   1篇
  2012年   2篇
  2008年   1篇
  2006年   2篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
InAs self-assembled quantum dots (SA-QDs) were incorporated into GaAlAs/GaAs heterostructure for solar cell applications. The structure was fabricated by molecular beam epitaxy on p-GaAs substrate. After the growth of GaAs buffer layer, multi-stacked InAs QDs were grown by self-assembly with a slow growth rate of 0.01 ML/s, which provides high dot quality and large dot size. Then, the structure was capped with n-GaAs and wide band gap n-GaAlAs was introduced. One, two or three stacks of QDs were sandwiched in the p–n heterojunction. The contribution of QDs in solar cell hetero-structure is the quantized nature and a high density of quantized states. IV characterization was conducted in the dark and under AM1 illumination with 100 mW/cm2 light power density to confirm the solar cell performance. Photocurrent from the QDs was confirmed by spectral response measurement using a filtered light source (1.1-μm wavelength) and a tungsten halogen lamp with monochromator with standard lock-in technique. These experimental results indicate that QDs could be an effective part of solar cell heterostructure. A typical IV characteristic of this yet-to-be-optimized solar cell, with an active area of 7.25 mm2, shows an open circuit voltage Voc of 0.7 V, a short circuit current Isc of 3.7 mA, and a fill factor FF of 0.69, leading to an efficiency η of 24.6% (active area).  相似文献   
2.
Composites of poly(lactic) acid (PLA) reinforced with TEMPO-oxidized fibrillated cellulose (TOFC) were prepared to 15, 20, 25, and 30% fiber weight fractions. To aid dispersion and to improve stress transfer, we acetylated the TOFC prior to the fabrication of TOFC-PLA composite films. Raman spectroscopy was employed to study the deformation micromechanics in these systems. Microtensile specimens were prepared from the films and deformed in tension with Raman spectra being collected simultaneously during deformation. A shift in a Raman peak initially located at ~1095 cm(-1), assigned to C-O-C stretching of the cellulose backbone, was observed upon deformation, indicating stress transfer from the matrix to the TOFC reinforcement. The highest band shift rate, with respect to strain, was observed in composites having a 30% weight fraction of TOFC. These composites also displayed a significantly higher strain to failure compared to pure acetylated TOFC film, and to the composites having lower weight fractions of TOFC. The stress-transfer processes that occur in microfibrillated cellulose composites are discussed with reference to the micromechanical data presented. It is shown that these TOFC-based composite materials are progressively dominated by the mechanics of the networks, and a shear-lag type stress transfer between fibers.  相似文献   
3.
p-GaAs substrate was used as the starting material in molecular beam epitaxial growth. n-type GaAlAs for heterostructure and n-GaAs capping layer were then grown after a buffer layer deposition on the substrate. The n-GaAlAs on p-GaAs heterostructure solar cells, with active area of 13.25 mm2 under 100 mW/cm2 AM1 illumination light source, provide a typical output as follows: Voc=0.73 V, Isc=6 mA, FF=0.7 and η=23% (active area). Spectral response measurements from 500 to 850 nm reflects the window effect of GaAlAs and band edge of GaAs materials.  相似文献   
4.
Lyocell fibres were used to make microfibrillated cellulose (MFC) by combined homogenisation and sonication. A web-like structure was obtained with fibril diameters in the range of several micrometers to less than 80 nm. Composite samples with PLA resin reinforced with MFC networks were prepared using compression moulding. Young’s modulus and tensile strength of these composites increased by ~60% and 14% respectively, compared to the pure resin material. Raman spectroscopy was used to monitor the molecular deformation of networks and composite materials. A Raman band initially located at ~1095 cm?1 was observed to shift towards a lower wavenumber position upon tensile deformation. The rate of Raman band shift with respect to strain for the composites was higher than for the pure MFC networks, indicating that the observed improvement in mechanical properties results from stress transfer from the PLA resin to the MFC fibrils.  相似文献   
5.
In this work, poly(vinyl alcohol) (PVA) and cellulose nanocrystals (CNCs) were crosslinked using sodium tetraborate decahydrate (borax) to improve the mechanical and thermal properties of the neat PVA. The results showed that the CNCs affected the crystallization behavior of the crosslinked PVA. The crystallization temperature of the crosslinked PVA with CNCs increased considerably from ~152 to ~187 °C. The continuous improvement of the thermal stability was observed with the increasing content of CNCs in the crosslinked PVA films. Additionally, the strong interaction between the CNCs and PVA was theoretically estimated from the Young's modulus values of the composites. Thermodynamic mechanical testing revealed that the crosslinked PVA composite films with CNCs could bear higher loads at high temperature compared to the films without the CNCs. At 60 °C, 2.7 GPa was reported for the storage modulus of the crosslinked composites with 3 wt % of CNCs, twice as high as that for the crosslinked films without CNCs. Moreover, creep results were improved when CNCs were added in the crosslinked nanocomposites. The materials prepared in this work could broaden the opportunities for applications in a wide range of temperatures. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45710.  相似文献   
6.
7.
This research work has concerned the development of polymer films, reinforced with graphene nanoplatelets (GNP) for use as encapsulating films for organic photovoltaic (OPV) cells. The aim of this work was to investigate the effects of concentrations and orientations of GNP on mechanical, optical, and barrier properties of polymer composite films. In this regard, the neat GNP was modified with Fe3O4 prior to mixing with acrylate-based monomers. The mixture was then cured by photo-polymerization with and without the application of magnetic fields. Changes in orientation of the functionalized GNP with the direction of applied magnetic fields were analyzed by optical microscopy, scanning electron microscopy, and transmission electron microscopy. From the results, it was found that by inducing the orientation of functionalized GNP to the horizontal direction (with respect to the OPV cell), the great enhancement in tensile and barrier properties of the polymer composite films was achieved. This led to the longer performance of the OPV cell encapsulated with the nanocomposite film with 0.1 phr of the horizontally oriented GNP in comparison with the OPV cell encapsulated with the film reinforced with randomly oriented GNP at the same content.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号