首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   2篇
化学工业   4篇
能源动力   3篇
自动化技术   1篇
  2021年   1篇
  2018年   1篇
  2017年   2篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
排序方式: 共有8条查询结果,搜索用时 0 毫秒
1
1.
Proton conducting membranes based on crosslinked poly(vinyl alcohol) (PVA) and poly (styrene sulfonic acid)-functionalized silica particles (PSSA-Si) were reported. Two-step crosslinking process involving sulfosuccinic acid (SSA) and glutaraldehyde as crosslinking agents was conducted to provide additional proton source and to enhance hydrolytic and mechanical stabilities. PSSA-Si was synthesized from vinyltrimethoxysilane via Stöber method, followed by radical polymerization of sodium 4-vinylbenzenesulfonate on the silica particle. The obtained PSSA-Si was characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR). The effects of PSSA-Si loading (0, 2.5, 5, and 10%) and PSSA content in PSSA-Si (2, 5, 8, and 12%) on membrane properties including surface morphology, water vapor absorption, water uptake, ion exchange capacity, mechanical and oxidative stabilities, and proton conductivity were investigated and discussed. Proton conductivities of these composite membranes were found to increase with PSSA-Si loading and PSSA content. Promising proton conductivities of ~0.072 S/cm were obtained from PVA-8%PSSA-Si-10 and PVA-12%PSSA-Si-10 membranes, having PSSA-Si loading of 10%, and PSSA contents of 8%, and 12%, respectively. In addition, these membranes showed good hydrolytic and oxidative stabilities with high storage moduli.  相似文献   
2.
The sensitivity of glucose sensors fabricated from alizarin–boronic acid adducts was improved by an assistance of surfactants. Basically, Alizarin Red S (ARS) is not a fluorescence active compound. However, the fluorescence emission can be observed when forming an adduct with 2-formylphenyl boronic acid (2-FPBA). Using displacement strategy, the fluorescence intensity of the ARS/2-FPBA adduct decreased as a linear function of the glucose concentration. A simple and sensitive method was developed by incorporating the ARS/2-FPBA adduct in the hydrophobic core of micelles. Various parameters that could possibly affect the fluorescence quenching ability including solution pH, concentration of 2-FPBA, types of surfactants and concentrations of surfactants were investigated. The optimum condition for the determination of glucose by the proposed assay was 2 mM cetyltrimethylammonium bromide (CTAB) in 0.05 M phosphate buffer pH 7.0. The fluorescence intensity of the ARS/2-FPBA adduct in the presence of CTAB was remarkably 13 times higher than that in the buffer solution. Moreover, the linear working concentration range was found to be 1.2–80 mM, and the calibration sensitivity was 14 times higher than that from the system containing only buffer solution.  相似文献   
3.
Poly(vinyl alcohol) (PVA) was grafted on natural rubber (NR) latex particles (NR‐g‐PVA) using potassium persulfate to generate active radicals on both NR particle surface as well as PVA molecules. 1H‐ and 13C‐nuclear magnetic resonance spectroscopy suggested a possibly chemical attachment of PVA on the NR. The amount of graft‐PVA expressed in term of grafting percentage (%G) increased almost linearly with the amount of PVA adding to the NR latex. Measuring by dynamic light scattering, the particle size of NR‐g‐PVA particles was larger than the size of unmodified NR, also it increased with the molecular weight and %G of PVA. Transmission electron microscopy images of the NR‐g‐PVA latex particles revealed that the size of PVA‐grafted NR particle was enlarged by a layer of graft‐PVA surrounding the NR particle. Given by the graft‐PVA layer surrounding NR particles, the NR‐g‐PVA latex particles possessed better colloidal stability as lowering pH compared with the unmodified NR latex. Comparing with unmodified NR particles, the electrophoretic mobility of NR‐g‐PVA particles was lower due to the presence of graft‐PVA that shifted the shear plane further away from the surface of the particles. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   
4.
Electrospun fibers of poly(vinyl alcohol) (PVA) and PVA/poly(4‐styrenesulfonic acid) (PSSA) were obtained. By varying PVA to PSSA weight ratios, various fiber sizes and shapes were observed. The fiber diameters ranged from 176 to 766 nm, and the largest fibers were obtained from 15 wt % aqueous PVA solution. The effect of solution viscosity on fiber morphology was discussed. The presence of PSSA in electrospun fibers was confirmed by Fourier Transform Infrared spectroscopy. The PVA fibers were thermally stable up to 250°C, and the PVA/PSSA fibers were stable up to approximately 150°C. The water stability of the fibers was improved by heat‐treatment at 120°C. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   
5.
Simple and promising approaches for developing high‐performance Fe3+ sensors were proposed. Polyvinyl chloride (PVC) membrane containing pyrene as a fluorescent indicator was prepared via solvent‐cast method. Upon immersion into 1.0 mM Fe3+ solution, the fluorescence emission of the membrane decreased with the ratio of fluorescence intensities before and after (F0/F) immersion of 1.25. The sensitivity enhancement was achieved through the introduction of polystyrene (PS) onto PVC and the introduction of porous structures. Polyvinyl chloride‐graft‐polystyrene copolymers (PVC‐g‐PS) were synthesized via Atom Transfer Radical Polymerization using PVC as macroinitiator. The grafting percentages of PS on PVC calculated from Nuclear Magnetic Resonance Spectroscopy were 17 and 41. The membrane prepared from low molecular weight copolymer showed higher sensing ability than that from PVC with the F0/F value of 1.39. The increase in PS chain length did not significantly affect the fluorescence quenching. A Stern–Volmer quenching relationship was found with Ksv of 3.96 × 102 M?1. The effect of porous structures on fluorescence quenching was studied by introducing Triton X‐100 as a porogen to PVC/pyrene solution. Attenuated total reflection Fourier transform infrared spectroscopy and Scanning Electron Microscopy analyses confirmed a complete removal of Triton X‐100 after 3 days of immersion in water. The porous membrane demonstrated an enhanced sensing performance with the F0/F value of 1.46. PVC‐g‐PS/pyrene membrane exhibited highly sensitive and selective responses toward Fe3+ over Cu2+, Mg2+, Co2+, Zn2+, Ni2+, and Ag+. In addition, a good reversibility after five cycles of quenching and regeneration was obtained. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41759.  相似文献   
6.
Proton conducting membranes based on polymers containing sulfonic acid and tetrazole moieties were developed. Successful syntheses of poly(acrylonitrile‐co ‐styrene sulfonic acid) (PAN‐co ‐PSSA), poly(acrylonitrile‐co ‐5‐vinyl tetrazole) (PAN‐co ‐PVTz), and poly(acrylonitrile‐co ‐5‐vinyl tetrazole‐co ‐styrene sulfonic acid) (PAN‐co ‐PVTz‐co ‐PSSA) were confirmed by 1H‐nuclear magnetic resonance spectroscopy, elemental analysis, and Fourier transform infrared spectroscopy. Two approaches were performed to study the effects of molar ratio of sulfonic acid to tetrazole and tetrazole content on membrane properties. In the first approach, PAN‐co ‐PSSA was blended with PAN‐co ‐PVTz at three molar ratios. The second approach focused on PAN‐co ‐PVTz‐co ‐PSSA membranes with various tetrazole contents. PAN‐co ‐PSSA membrane was also prepared. All solution‐cast membranes were hydrolytically stable, except for PAN‐co ‐PVTz‐co ‐PSSA with 71% tetrazole. Surface morphologies of blend membranes were studied using scanning electron microscopy, and no phase separation was observed. Water uptake was shown to increase with increasing tetrazole. All membranes exhibited high thermal stability (up to 250 °C) and high storage moduli. Proton conductivity was found to depend significantly on relative humidity. The influences of sulfonic acid to tetrazole ratio and tetrazole content on proton conduction were observed and discussed. A maximum proton conductivity of 7.1 × 10?3 S/cm at 26 °C was obtained from PAN‐co ‐PSSA membrane. In addition, all tested membranes showed relatively good oxidative stability after treatment in Fenton's reagent. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45411.  相似文献   
7.
The development of polymer electrolyte membranes based on poly(acrylonitrile-co-styrene sulfonic acid) (PAN-co-PSSA) is reported. PAN-co-PSSA copolymers with two different copolymer compositions were synthesized via free radical polymerization, and confirmed by 1H NMR and elemental analysis. Homogeneous PAN-co-PSSA membranes were obtained via solvent cast method. PAN-co-PSSA membrane with the ratio of AN to SSA in the copolymer of 16:1 exhibited higher water uptake and IEC than that of 22:1. PAN-co-PSSA (16:1) was then doped with imidazole at molar ratios of 1:0.5, 1:1, and 1:2. Membrane functionalities were studied using FTIR. Thermal and mechanical properties were investigated using thermogravimetric analysis and dynamic mechanical analysis, respectively. All prepared membranes showed thermal stability of up to 180 °C, and showed superior mechanical property to that of Nafion® 117 within the studied temperature range. In addition, good oxidative stability was observed. Proton conductivity at room temperature was found to depend highly on relative humidity, and was enhanced through doping with imidazole. A maximum proton conductivity of 2.1 × 10?3 S/cm was achieved from membrane 1:2 saturated with water vapor. At higher temperatures (120–180 °C), proton conductivities of imidazole-doped membranes increased with increasing temperature and imidazole content.  相似文献   
8.
Composite proton conducting membranes were successfully synthesized from chitosan, poly (vinyl alcohol) and sulfonic acid-functionalized silica nanoparticles. Sulfosuccinic acid (SSA) and glutaraldehyde were used as double crosslinking agents, where the effect of SSA content on membrane properties, including water vapor absorption, water uptake, ion exchange capacity, and proton conductivity was investigated and were found to increase as a function of SSA loading. The most promising membrane was then formed into a composite with either silica nanoparticles containing poly (2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS-Si) or poly (styrene sulfonic acid) (PSSA-Si). PAMPS-Si and PSSA-Si were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR). The effects of nanoparticle loading and polymer shell on membrane properties were studied. Proton conductivity increased at higher nanoparticle loadings, and reached a maximum of 3.8–3.9 × 10?3 S/cm at 20% loading. The influence of polymer shell on membrane properties was not significantly observed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号