首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学工业   2篇
  2023年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
The growing popularity of silver nanoparticles in the field of nanotechnology has created the necessity of developing new sustainable synthesis methods. This study presents a new green in situ functionalization method of melamine foams with silver nanoparticles. The synthesis pathway and the influence of the processing parameters are optimized to phase out 100% of polluting and dangerous solvents while maximizing silver transfer. A deep study of the morphological and chemical changes of the synthesized silver nanoparticles successfully demonstrated that water can be used as the only solvent for obtaining active melamine foams with potential application in multiple fields. Results showed that rising reaction temperatures from environmental to mild conditions (40 °C and 60 °C) is crucial for obtaining high functionalization yields with this green method. Following the optimum fabrication conditions using only water, highly functionalized melamine foams showed a great amount of ultrafine silver nanoparticles distributed over the porous structure.  相似文献   
2.
The production of open-cell (OC) nanostructures in polymer foams without non-foamed solid skins by gas dissolution foaming has been developed in this work. First, several grades of MAM block copolymer (methyl methacrylate-b-butyl acrylate-b-methyl methacrylate) at high content are employed as heterogeneous phase in poly(methyl methacrylate) for producing OC structures. Atomic force microscopy and extensional rheology are used as methods to understand the main features to obtain OC nanocellular structures. Second, the gas diffusion barrier approach is employed for the first time in polymer blends to avoid the appearance of the solid skins in the borders, which typically appears when the cellular polymer is produced by gas dissolution foaming. The influence of the poly(vinyl alcohol) gas diffusion barrier is analyzed, together with the effect of heterogeneous nucleation provided by MAM copolymer, on the solid skins’ formation. The synergy between both approaches allows obtaining porous nanocellular polymeric films with an OC structure non-constrained by the presence of outer solid skins.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号