首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   20篇
  国内免费   2篇
电工技术   2篇
化学工业   37篇
金属工艺   1篇
机械仪表   2篇
建筑科学   2篇
能源动力   14篇
轻工业   14篇
水利工程   4篇
石油天然气   4篇
无线电   16篇
一般工业技术   37篇
冶金工业   14篇
原子能技术   7篇
自动化技术   17篇
  2023年   2篇
  2022年   3篇
  2021年   4篇
  2020年   2篇
  2019年   3篇
  2018年   16篇
  2017年   7篇
  2016年   8篇
  2015年   6篇
  2014年   10篇
  2013年   10篇
  2012年   3篇
  2011年   9篇
  2010年   7篇
  2009年   7篇
  2008年   11篇
  2007年   3篇
  2006年   4篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   7篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1987年   2篇
  1985年   1篇
  1984年   3篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
  1974年   1篇
  1969年   1篇
  1966年   1篇
排序方式: 共有171条查询结果,搜索用时 15 毫秒
1.
2.
Hydrogen is the lightest element in nature, and so, its detection and quantitative analysis is difficult by the conventional methods utilized for other elements. In the recent years the technique of elastic recoil detection analysis (ERD) using 1–2 MeV He+ beam has been developed to quantitatively and simultaneously analyze hydrogen and its isotopes in solids. Such a facility has been set up using the 2 MeV Van-de-Graaff accelerator at IIT Kanpur. It facilitates H and D analysis in a material up to a depth of ∼ 1μm with a detection sensitivity of 0·1 at.% and depth resolution of about 300 ?. The application potential of this setup is illustrated by presenting the results of measurements performed on Al:H:D systems prepared by plasma source ion implantation and highT c YBCO pellets exposed to humid atmosphere.  相似文献   
3.
Experimental validation of numerical models developed by the authors to predict the static behaviour of microelectrostatic actuators is described. Cantilever microbeams, currently used in connection with RF-MEMS and micro-scale material testing were analysed. A set of microcantilevers, bending in the plane of the wafer, i.e. in the same plane as the profiling system’s target, was tested. This differs from the popular case of out-of-plane microbeams, usually studied in the literature. Geometry nonlinearity caused by large deflection of the microbeam was investigated and nonlinear coupled formulation of electromechanical equilibrium was performed. Coupled-field analysis was implemented using the Finite Element Method (FEM), to predict displacements and pull-in voltage measured by Fogale Zoomsurf 3D, subsequently plotting the displacement-versus-voltage curve to complete model validation. FEM nonlinear analysis, based on iterative approach with mesh morphing, and FEM non-incremental approach, including a special element proposed by the authors, are compared to the linear solution and to experimental results. Geometry nonlinearity appears relevant in microbeam modelling and requires a nonlinear solution of the coupled problem. Investigative work, which compared the results of 2D and 3D models to experimental data, revealed that some three dimensional effects are significant in model validation, but the 2D approach may be effective in predicting static behaviour provided that at least a microbeam thickness equivalent is adopted.  相似文献   
4.
We investigate the role of interfacial slip on evaporation of a thin liquid film in a microfluidic channel. The effective slip mechanism is attributed to the formation of a depleted layer adhering to the substrate–fluid interface, either in a continuum or in a rarefied gas regime, as a consequence of intricate hydrophobic interactions in the narrow confinement. We appeal to the fundamental principles of conservation in relating the evaporation mechanisms with fluid flow and heat transfer over interfacial scales. We obtain semi-analytical solutions of the pertinent governing equations, with coupled heat and mass transfer boundary conditions at the liquid–vapor interface. We observe that a general consequence of interfacial slip is to elongate the liquid film, thereby leading to a film thickening effect. Thicker liquid films, in turn, result in lower heat transfer rates from the wall to liquid film, and consequently lower mass transfer rates from the liquid film to the vapor phase. Nevertheless, the total mass of evaporation (or equivalently, the net heat transfer) turns out to be higher in case of interfacial slip due to the longer film length. We also develop significant physical insights on the implications of the relative thickness of the depleted layer with reference to characteristic length scales of the microfluidic channel on the evaporation process, under combined influences of the capillary pressure, disjoining pressure, and the driving temperature differential for the interfacial transport.  相似文献   
5.
Summary Theoretical and experimental analyses have been carried out for determining the injection condition below which the formation of air core does not take place in the course of flow of a time-independent power-law fluid through a swirl nozzle. Analytical solution lends one distinct value of generalized Reynolds number at the inlet to a nozzle below which the air core is not formed. Experiments reveal that there exist two limiting values of such generalized Reynolds number regarding the formation of air core in a nozzle. One value being the upper limit below which steady flow occurs without air core, the other one is the lower limit above which steady flow with fully developed air core persists. In between these two limiting values, there prevails a transition zone through which fully developed air core is set up within the nozzle. For all the nozzles, theoretical results are in fair agreement with the experimental values of upper limit of generalized Reynolds numbers with respect to steady flow without air core. Amongst all the pertinent independent geometrical parameters of a nozzle, the orifice-to-swirl chamber-diameter ratio has the remarkable influence on generalized Reynolds number describing the initiation of air core.Nomenclature D 1 Swirl chamber diameter - D 2 Orifice diameter - D s Diameter of tangential entry ports - E A non-dimensional parameter defined by Eq. (9) - E R A non-dimensional parameter defined by Eq. (25) - K Flow consistency index - L 1 Length of the swirl chamber - n Flow behaviour index - P Static pressure inside the nozzle - P b Back-pressure of the nozzle - Q Volume flow rate - R Radius vector or longitudinal coordinate with respect to spherical coordinate system (Fig. 3) - R 1 Radius of the swirl chamber - R 2 Radius of the orifice - Generalized Reynolds number at the inlet to the nozzle - Limiting value of generalized Reynolds number describing initiation of air core - R z Radius at any section - r Radial distance from the nozzle axis - r a Air core radius - u Longitudinal component of velocity with respect to spherical coordinate system (Fig. 3) - V r Radial velocity component - V z Axial velocity component - V Tangential velocity component - Tangential velocity at inlet to the nozzle - v Component of velocity in the axial plane perpendicular toR (Fig. 3) - w Component of velocity perpendicular to axial plane with respect to the spherical coordinate system (Fig. 3) - z Distance along the nozzle axis from its inlet plane - Half of the spin chamber angle - Boundary layer thickness measured perpendicularly from the nozzle wall - 2 Boundary layer thickness at the orifice - Angle, which a radius vector makes with the nozzle axis, in spherical coordinate system (Fig. 3) - Density of the fluid - Running coordinate in the azimuthal direction with respect to the cylindrical polar coordinate system as shown in Fig. 3 - Circulation constant With 8 Figures  相似文献   
6.
7.
SnO2-coated TiNb2O7 powders were synthesized via the solution coating method in the present research. The SnO2 layers with a thickness of 3–5 nm were homogeneously coated on the surface of TiNb2O7 particles. TiNb2O7 coated with SnO2 of 5 mol% with high Li+ diffusion coefficient delivered the discharge capacity of 319.5 mAh/g, which was 6.6% higher than that of the non-coated samples. The enhancement of capacity for the coated TiNb2O7 was owing to the low charge-transfer resistance of 17.5 Ω in contrary to the non-coated TiNb2O7 (27.8 Ω). SnO2-coated TiNb2O7 possessed an improved capacity retention of 85.2% at 5 C after 100 cycles, superior to the non-coated TiNb2O7 (79.8%). On the other hand, the excessive amounts of SnO2 coating led to the reduction in the capacity of the prepared samples. The excessive amounts of SnO2 layers suppressed the Li+ diffusion and increased the charge-transfer resistance. The obtained results in this study indicated that coating of TiNb2O7 with appropriate amounts of SnO2 significantly improved the electrochemical performance of TiNb2O7.  相似文献   
8.
To simultaneously improve the fracture toughness and heat resistance of a cured toughened epoxy resin along with a reduction in its viscosity during the mixing process, two novel polysulfone‐type polymers are synthesized via azide–alkyne polymerization for use as toughening agents. The epoxy resin toughened with these polymers by in situ azide–alkyne polymerization during the cure process, which shows excellent processibility and based on the significantly lower viscosity (61 and 62 cP) during epoxy mixing process than that of commonly commercial polyethersulfone (PES, 127,612 cP). The novel polysulfone‐type polymer toughened epoxy resin showed the advantage in excellent fracture toughness than the PES toughened epoxy. In addition, the glass transition temperature of the novel polysulfone‐type polymer toughened epoxy resin is similar to that of the neat one (~230 °C) and does not decrease, which implies excellent heat resistance of the toughened epoxy. These phenomena can be attributed to the formation of semi‐interpenetrating polymer networks comprising the epoxy network and the linear polysulfone‐type polymers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45790.  相似文献   
9.
The state-of-the-art density functional theory (DFT) is employed to study the catalytic activity of arsenene for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). We have included dispersion correction to get accurate adsorption energy on the individual catalytic surface (top site). Using binding energy calculation, arsenene is shown to be a potential candidate for HER. Here we investigate the stability and electronic properties of the honeycomb structure of the arsenene system using first-principles calculation to find the effect of different dopants on the fundamental band gap, which is one of the primary parameters in the photocatalytic water splitting. Further, we sieved the dopant for better HER catalytic activity by substituting one of the arsenene (As) atoms by B, N, O, Ge, Ga and Se atoms to make arsenene a better candidate for HER. Our studies depict that HER activity is increased by 82% for O-doped arsenene and OER activity by 87% for B-doped arsenene as compared to pristine arsenene.  相似文献   
10.
To maximize the efficacy of chronic osteomyelitis antibiotherapy while reducing antibiotic systemic toxicity, as well as time and costs of hospitalizations, it has been thought that monoolein–water gels incorporating gentamicin sulfate could be used as local, bioresorbable, and sustained-release implants. For this purpose, four formulations were examined with regard to their physicochemical and in vitro drug release characteristics. Hot stage microscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and X-ray diffraction showed cubic liquid crystalline and eutectic structures. The more suitable formulation consisting of 80–15–5% wt/wt monoolein–water–gentamicin sulfate progressively released the antibiotic for a period of 3 weeks without burst effect. Moreover, the content and the release profile of gentamicin sulfate were not significantly changed after storage at 2–6°C for a period of 10 months.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号