首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   417篇
  免费   26篇
电工技术   1篇
化学工业   126篇
金属工艺   3篇
机械仪表   5篇
建筑科学   12篇
能源动力   5篇
轻工业   47篇
水利工程   2篇
无线电   53篇
一般工业技术   82篇
冶金工业   24篇
自动化技术   83篇
  2024年   1篇
  2023年   11篇
  2022年   32篇
  2021年   30篇
  2020年   30篇
  2019年   13篇
  2018年   18篇
  2017年   13篇
  2016年   18篇
  2015年   12篇
  2014年   17篇
  2013年   32篇
  2012年   19篇
  2011年   46篇
  2010年   17篇
  2009年   12篇
  2008年   19篇
  2007年   20篇
  2006年   4篇
  2005年   16篇
  2004年   2篇
  2003年   11篇
  2002年   4篇
  2001年   6篇
  2000年   3篇
  1999年   2篇
  1998年   9篇
  1997年   10篇
  1996年   3篇
  1995年   5篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1981年   1篇
  1979年   2篇
  1968年   1篇
排序方式: 共有443条查询结果,搜索用时 31 毫秒
1.
Based on the mobile automaton model, an algorithm is introduced that grows planar, tri-valent graphs by exhibiting a peculiar, twofold dynamics. In a first phase, graph growth appears to be pseudo-random and O(n) then it settles to a very regular behavior and rate. A pseudo-random mobile automaton is already known; the new automaton provides now a finite, but surprisingly long, pseudo-random, linear growth process. Applications of mobile automata to fundamental physics and quantum gravity have been recently suggested.  相似文献   
2.
Human-robot synchrony: flexible assistance using adaptive oscillators   总被引:1,自引:0,他引:1  
We propose a novel method for movement assistance that is based on adaptive oscillators, i.e., mathematical tools that are capable of extracting the high-level features (amplitude, frequency, and offset) of a periodic signal. Such an oscillator acts like a filter on these features, but keeps its output in phase with respect to the input signal. Using a simple inverse model, we predicted the torque produced by human participants during rhythmic flexion-extension of the elbow. Feeding back a fraction of this estimated torque to the participant through an elbow exoskeleton, we were able to prove the assistance efficiency through a marked decrease of the biceps and triceps electromyography. Importantly, since the oscillator adapted to the movement imposed by the user, the method flexibly allowed us to change the movement pattern and was still efficient during the nonstationary epochs. This method holds promise for the development of new robot-assisted rehabilitation protocols because it does not require prespecifying a reference trajectory and does not require complex signal sensing or single-user calibration: the only signal that is measured is the position of the augmented joint. In this paper, we further demonstrate that this assistance was very intuitive for the participants who adapted almost instantaneously.  相似文献   
3.
This article describes the fabrication of durable metallic patterns that are embedded in poly(dimethylsiloxane) (PDMS) and demonstrates their use in several representative applications. The method involves the transfer and subsequent embedding of micrometer‐scale gold (and other thin‐film material) patterns into PDMS via adhesion chemistries mediated by silane coupling agents. We demonstrate the process as a suitable method for patterning stable functional metallization structures on PDMS, ones with limiting feature sizes less than 5 μm, and their subsequent utilization as structures suitable for use in applications ranging from soft‐lithographic patterning, non‐planar electronics, and microfluidic (lab‐on‐a‐chip, LOC) analytical systems. We demonstrate specifically that metal patterns embedded in both planar and spherically curved PDMS substrates can be used as compliant contact photomasks for conventional photolithographic processes. The non‐planar photomask fabricated with this technique has the same surface shape as the substrate, and thus facilitates the registration of structures in multilevel devices. This quality was specifically tested in a model demonstration in which an array of one hundred metal oxide semiconductor field‐effect transistor (MOSFET) devices was fabricated on a spherically curved Si single‐crystalline lens. The most significant opportunities for the processes reported here, however, appear to reside in applications in analytical chemistry that exploit devices fabricated using the methods of soft lithography. Toward this end, we demonstrate durably bonded metal patterns on PDMS that are appropriate for use in microfluidic, microanalytical, and microelectromechanical systems. We describe a multilayer metal‐electrode fabrication scheme (multilaminate metal–insulator–metal (MIM) structures that substantially enhance performance and stability) and use it to enable the construction of PDMS LOC devices using electrochemical detection. A polymer‐based microelectrochemical analytical system, one incorporating an electrode array for cyclic voltammetry and a microfluidic system for the electrophoretic separation of dopamine and catechol with amperometric detection, is demonstrated.  相似文献   
4.
Nano/microwires of semiconducting materials (e.g., GaAs and InP) with triangular cross‐sections can be fabricated by “top–down” approaches that combine lithography of high‐quality bulk wafers (using either traditional photolithography or phase‐shift optical lithography) with anisotropic chemical etching. This method gives good control over the lateral dimensions, lengths, and morphologies of free‐standing wires. The behaviors of many different resist layers and etching chemistries are presented. It is shown how wire arrays with highly ordered alignments can be transfer printed onto plastic substrates. This “top–down” approach provides a simple, effective, and versatile way of generating high‐quality single‐crystalline wires of various compound semiconductors. The resultant wires and wire arrays have potential applications in electronics, optics, optoelectronics, and sensing.  相似文献   
5.
6.
This study examines the crystallographic anisotropy of strain evolution in model, single‐crystalline silicon anode microstructures on electrochemical intercalation of lithium atoms. The 3D hierarchically patterned single‐ crystalline silicon microstructures used as model anodes were prepared using combined methods of photolithography and anisotropic dry and wet chemical etching. Silicon anodes, which possesses theoretically ten times the energy density by weight compared to conventional carbon anodes, reveal highly anisotropic but more importantly, variably recoverable crystallographic strains during cycling. Model strain‐limiting silicon anode architectures that mitigate these impacts are highlighted. By selecting a specific design for the silicon anode microstructure, and exploiting the crystallographic anisotropy of strain evolution upon lithium intercalation to control the direction of volumetric expansion, the volume available for expansion and thus the charging capacity of these structures can be broadly varied. We highlight exemplary design rules for this self‐strain‐limited charging in which an anode can be variably optimized between capacity and stability. Strain‐limited capacities ranging from 677 mAhg?1 to 2833 mAhg?1 were achieved by constraining the area available for volumetric expansion via the design rules of the microstructures.  相似文献   
7.
Direct‐ink writing (DIW), a rapidly growing and advancing form of additive manufacturing, provides capacities for on‐demand tailoring of materials to meet specific requirements for final designs. The penultimate challenge faced with the increasing demand of customization is to extend beyond modification of shape to create 4D structures, dynamic 3D structures that can respond to stimuli in the local environment. Patterning material gradients is foundational for assembly of 4D structures, however, there remains a general need for useful materials chemistries to generate gray scale gradients via DIW. Here, presented is a simple materials assembly paradigm using DIW to pattern ionotropic gradients in hydrogels. Using structures that architecturally mimic sea‐jelly organisms, the capabilities of spatial patterning are highlighted as exemplified by selectively programming the valency of the ion‐binding agents. Spatial gradients, when combined with geometry, allow for programming the flexibility and movement of iron oxide nanoparticle–loaded ionotropic hydrogels to generate 4D‐printed structures that actuate in the presence of local magnetic fields. This work highlights approaches to 4D design complexity that exploits 3D‐printed gray‐scale/gradient mechanics.  相似文献   
8.
An innovative receiver architecture for the satellite‐based automatic identification system has been recently proposed. In this paper, we describe a few modifications that can be introduced on the algorithms for synchronization and detection, which provide an impressive performance improvement. The receiver architecture has been designed for an on‐board implementation, and a prototype has been implemented by the University of Parma and CGS S.p.A. Compagnia Generale per lo Spazio under the European Space Agency project FENICE (Flexible innovative AIS receiver prototype). A few modifications are also here described that could allow a further performance improvement in case of processing moved to ground‐based stations, based on a priori information there available. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
9.
The integration of satellite and terrestrial networks is a promising solution for extending broadband coverage to areas not connected to a terrestrial infrastructure, as also demonstrated by recent commercial and standardisation endeavours. However, the large delays and Doppler shifts over the satellite channel pose severe technical challenges to traditional terrestrial systems, as long‐term evolution (LTE) or 5G. In this paper, 2 architectures are proposed for a low Earth orbit mega‐constellation realising a satellite‐enabled LTE system, in which the on‐ground LTE entity is either an eNB (Sat‐eNB) or a relay node (Sat‐RN). The impact of satellite channel impairments as large delays and Doppler shifts on LTE PHY/MAC procedures is discussed and assessed. The proposed analysis shows that, while carrier spacings, random access and RN attach procedures do not pose specific issues and hybrid automatic repeat request requires substantial modifications. Moreover, advanced handover procedures will be also required due to the satellites' movement.  相似文献   
10.
The need for highly integrable and programmable analog-to-digital converters (ADCs) is pushing towards the use of dynamic regenerative comparators to maximize speed, power efficiency and reconfigurability. Comparator thermal noise is, however, a limiting factor for the achievable resolution of several ADC architectures with scaled supply voltages. While mismatch in these comparators can be compensated for by calibration, noise can irreparably hinder performance and is less straightforward to be accounted for at design time. This paper presents a method to estimate the input referred noise in fully dynamic regenerative comparators leveraging a reference architecture. A time-domain analysis is proposed that accounts for the time varying nature of the circuit exploiting some basic results from the solution of stochastic differential equations. The resulting symbolic expressions allow focusing designers' attention on the most influential noise contributors. Analysis results are validated by comparison with electrical simulations and measurement results from two ADC prototypes based on the reference comparator architecture, implemented in 0.18- $mu{hbox {m}}$ and 90-nm CMOS technologies.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号