首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   6篇
化学工业   2篇
建筑科学   22篇
轻工业   10篇
无线电   3篇
自动化技术   14篇
  2022年   1篇
  2020年   2篇
  2018年   4篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   5篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1992年   3篇
排序方式: 共有51条查询结果,搜索用时 46 毫秒
1.
Text categorization is the task of automatically assigning unlabeled text documents to some predefined category labels by means of an induction algorithm. Since the data in text categorization are high-dimensional, often feature selection is used for reducing the dimensionality. In this paper, we make an evaluation and comparison of the feature selection policies used in text categorization by employing some of the popular feature selection metrics. For the experiments, we use datasets which vary in size, complexity, and skewness. We use support vector machine as the classifier and tf-idf weighting for weighting the terms. In addition to the evaluation of the policies, we propose new feature selection metrics which show high success rates especially with low number of keywords. These metrics are two-sided local metrics and are based on the difference of the distributions of a term in the documents belonging to a class and in the documents not belonging to that class. Moreover, we propose a keyword selection framework called adaptive keyword selection. It is based on selecting different number of terms for each class and it shows significant improvement on skewed datasets that have a limited number of training instances for some of the classes.  相似文献   
2.
Polydimethylsiloxan (PDMS) turned out to be a simple and cost efficient material for the removal of nanoparticles from patterned surfaces. After molding the particle-laden surface using liquid silicone, surface cleaning is realized by curing the PDMS comprising the encapsulated particles and subsequent removal. The method is proven for silicon, SiO2 and gold surfaces occupied by carbon and Polytetrafluorethylen (PTFE or Teflon) particles. Samples up to 2?inch wafers were successfully cleaned. The effect of PDMS on the surface energy is verified by contact angle measurements showing a clear change in wetting for H2O. This effect is abolished by oxygen plasma and HF-Dip.  相似文献   
3.
The next-generation convergent microsystems, based on system-on-package (SOP) technology, require up-front system-level design-for-reliability approaches and appropriate reliability assessment methodologies to guarantee the reliability of digital, optical, and radio frequency (RF) functions, as well as their interfaces. Systems approach to reliability requires the development of: i) physics-based reliability models for various failure mechanisms associated with digital, optical, and RF Functions, and their interfaces in the system; ii) design optimization models for the selection of suitable materials and processing conditions for reliability, as well as functionality; and iii) system-level reliability models understanding the component and functional interaction. This paper presents the reliability assessment of digital, optical, and RF functions in SOP-based microsystems. Upfront physics-based design-for-reliability models for various functional failure mechanisms are presented to evaluate various design options and material selection even before the prototypes are made. Advanced modeling methodologies and algorithms to accommodate material length scale effects due to enhanced system integration and miniaturization are presented. System-level mixed-signal reliability is discussed thorough system-level reliability metrics relating component-level failure mechanisms to system-level signal integrity, as well as statistical aspects.  相似文献   
4.
5.
The release of ultra-fine particles (UFP, d < 0.1 µm) from hardcopy devices such as laser printers into the indoor environment is currently a topic of high concern. The general emission behavior of a printer can be examined by conducting emission test chamber measurements with particle-counting devices. Chamber experiments with modified laser printers operated without toner or paper also revealed UFP emissions. On the basis of these results we reasonably doubt the opinion that UFPs primarily originate from the toner. Instead, the high-temperature fuser unit is assumed to be one source for ultra-fine particle emission. UFP release typically follows the flow path of the cooling air which may leave the printer casing at various points (e.g. the paper tray). This limits the usability of the commercial filter systems available because the released particles could leave the printer without passing through the filter. Chamber measurements with various filter systems retrofitted to a laser printer demonstrate different efficiencies of UFP reduction. Complementary experiments were carried out in an office room. Here the decay of the particle concentration after a print job was about ten times slower than in the test chamber. A toxicological assessment of the emitted particles requires that their chemical composition be known. Due to the low mass of the released UFPs chemical analysis needs a prior enrichment on a feasible media. Experiments using electrostatic precipitation showed a flame retardant (tri-xylyl phosphate) whose concentration on the media was dependent on the number of pages printed. Whether this compound was particle-bound could not be determined.  相似文献   
6.
Photocatalytic surface reactions on indoor wall paint   总被引:3,自引:0,他引:3  
The reduction of indoor air pollutants by air cleaning systems has received considerable interest, and a number of techniques are now available. So far, the method of photocatalysis was mainly applied by use of titanium dioxide (TiO2) in flow reactors under UV light of high intensity. Nowadays, indoor wall paints are equipped with modified TiO2 to work as a catalyst under indoor daylight or artificial light. In chamber experiments carried out under indoor related conditions itwas shown thatthe method works for nitrogen dioxide with air exchange and for formaldehyde without air exchange at high concentrations. In further experiments with volatile organic compounds (VOCs), a small effect was found for terpenoids with high kOH rate constants. For other VOCs and carbon monoxide there was no degradation at all or the surface acted as a reversible sink. Secondary emissions from the reaction of paint constituents were observed on exposure to light. From the results it is concluded that recipes of photocatalytic wall paints need to be optimized for better efficiency under indoor conditions.  相似文献   
7.

Four asymmetry measurements (conventional coherence function (CCF), cross wavelet correlation (CWC), phase lag index (PLI), and mean phase coherence (MPC)) have been compared to each other for the first time in order to recognize emotional states (pleasant (P), neutral (N), unpleasant (UP)) from controls in EEG sub-bands (delta (0–4 Hz), theta (4–8 Hz), alpha (8–16 Hz), beta (16–32 Hz), gamma (32–64 Hz)) mediated by affective pictures from the International Affective Picture Archiving System (IAPS). Eight emotional features, computed as hemispheric asymmetry between eight electrode pairs (Fp1 − Fp2, F7 − F8, F3 − F4, C3 − C4, T7 − T8, P7 − P8, P3 − P4, and O1 − O2), have been classified by using data mining methods. Results show that inter-hemispheric emotional functions are mostly mediated by gamma. The best classification is provided by a neural network classifier, while the best features are provided by CWC in time-scale domain due to non-stationary nature of electroencephalographic (EEG) series. The highest asymmetry levels are provided by pleasant pictures at mostly anterio-frontal (F3 − F4) and central (C3 − C4) electrode pairs in gamma. Inter-hemispheric asymmetry levels are changed by each emotional state at all lobes. In conclusion, we can state the followings: (1) Nonlinear and wavelet transform-based methods are more suitable for characterization of EEG; (2) The highest difference in hemispheric asymmetry was observed among emotional states in gamma; (3) Cortical emotional functions are not region-specific, since all lobes are effected by emotional stimuli at different levels; and (4) Pleasant stimuli can strongly mediate the brain in comparison to unpleasant and neutral stimuli.

  相似文献   
8.
Motivated by growing considerations of the scale, severity, and risks associated with human exposure to indoor particulate matter, this work reviewed existing literature to: (i) identify state‐of‐the‐art experimental techniques used for personal exposure assessment; (ii) compare exposure levels reported for domestic/school settings in different countries (excluding exposure to environmental tobacco smoke and particulate matter from biomass cooking in developing countries); (iii) assess the contribution of outdoor background vs indoor sources to personal exposure; and (iv) examine scientific understanding of the risks posed by personal exposure to indoor aerosols. Limited studies assessing integrated daily residential exposure to just one particle size fraction, ultrafine particles, show that the contribution of indoor sources ranged from 19% to 76%. This indicates a strong dependence on resident activities, source events and site specificity, and highlights the importance of indoor sources for total personal exposure. Further, it was assessed that 10–30% of the total burden of disease from particulate matter exposure was due to indoor‐generated particles, signifying that indoor environments are likely to be a dominant environmental factor affecting human health. However, due to challenges associated with conducting epidemiological assessments, the role of indoor‐generated particles has not been fully acknowledged, and improved exposure/risk assessment methods are still needed, together with a serious focus on exposure control.  相似文献   
9.
The isocyanate emission potential of polyurethane (PUR) adhesives was evaluated by measuring the area-specific emission rate (SERa;microg m(-2) h(-1)) in a laboratory emission test chamber. The chamber was constructed for the analysis of reactive substances allowing quantitative trapping of all isocyanate monomers emitted from the substrate. Isocyanates were analyzed as their 1-(2-pyridyl)piperazine derivatives by HPLC with fluorescence and UV detection. The influence of temperature, the content of the diisocyanate in the resin, and the system pressure were investigated. These parameter studies gave evidence thatthe diisocyanate emission from the resins is a gas-phase-limited mass transfer. The overall mass-transfer coefficient (beta = Ddelta(-1)) was calculated for HDI and MDI. From the temperature dependence of emission rates, the enthalpies of evaporation for 2,4'-MDI, 4,4'-MDI, and HDI from their resins were determined. The influence of monomer content on SERa followed Henry's and Raoult's laws in the cases of HDI and MDI, respectively, allowing the prediction of emission rates proportional to diisocyanate content. Therefore, from simple parameters such as application temperature and monomer content, isocyanate emission rates can be predicted. Additionally, MDI emission from curing PUR adhesives was studied. These results elucidate the influence of monomer reactivity and curing mechanism on the decrease of MDI emission with time.  相似文献   
10.
A novel MEMS-based cantilever sensor with slender geometry is designed and fabricated to be implemented for determining personal exposure to carbon engineered nanoparticles (NPs). The function principle of the sensor is detecting the cumulative mass of NPs deposited on the cantilever surface as a shift in its resonant frequency. A self-sensing method with an integrated full Wheatstone bridge on the cantilever as a piezoresistive strain gauge is introduced for signal readout replacing optical sensing method. For trapping NPs to the cantilever surface, an electrostatic field is used. The calculated equivalent mass-induced resonant frequency shift due to NPs sampling is measured to be 11.78?±?0.01?ng. The proposed sensor exhibits a mass sensitivity of 8.33?Hz/ng, a quality factor of 1,230.68?±?78.67, and a temperature coefficient of the resonant frequency (TC f ) of ?28.6?ppm/°C. These results and analysis indicate that miniaturized sensors based on self-sensing piezoresistive microcantilever can offer the performance to fulfill the requirements of real-time monitoring of NPs-exposed personnel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号