首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   460篇
  免费   22篇
  国内免费   3篇
电工技术   12篇
综合类   3篇
化学工业   114篇
金属工艺   10篇
机械仪表   13篇
建筑科学   11篇
矿业工程   3篇
能源动力   35篇
轻工业   35篇
水利工程   8篇
石油天然气   7篇
无线电   22篇
一般工业技术   105篇
冶金工业   22篇
原子能技术   5篇
自动化技术   80篇
  2024年   1篇
  2023年   11篇
  2022年   19篇
  2021年   25篇
  2020年   28篇
  2019年   24篇
  2018年   26篇
  2017年   33篇
  2016年   19篇
  2015年   16篇
  2014年   33篇
  2013年   56篇
  2012年   18篇
  2011年   25篇
  2010年   24篇
  2009年   26篇
  2008年   26篇
  2007年   10篇
  2006年   10篇
  2005年   7篇
  2004年   5篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   8篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1974年   1篇
  1970年   1篇
排序方式: 共有485条查询结果,搜索用时 15 毫秒
1.
Improving the performance of heat transfer fluids is altogether significant. The best approach for improving the thermal conductivity is the addition of nanoparticles to the base fluid. In the present study, specific heat, dynamic viscosity, and thermal conductivity of water-based Indian coal fly ash stable nanofluid for 0.1% to 0.5% volume concentration in the temperature range of 30 to 60°C has been investigated. To evaluate an average particle diameter of 11.5 nm, the fly ash nanoparticles were characterized with scanning electron microscopy and dynamic light scattering. Using zeta potential, the stability of nanofluid in the presence of surfactant Triton X-100 was tested. Thermal conductivity and viscosity of fly ash nanofluid increased, while specific heat decreased as volume concentration increased. The effect of temperature on the fly ash nanofluid was directly proportional to its thermal conductivity and specific heat and inversely proportional to viscosity.  相似文献   
2.
3.
In this paper, a graphics processor unit (GPU) accelerated particle filtering algorithm is presented with an introduction to a novel resampling technique. The aim remains in the mitigation of particle impoverishment as well as computational burden, problems which are commonly associated with classical (systematic) resampled particle filtering. The proposed algorithm employs a priori-space dependent distribution in addition to the likelihood, and hence is christened as dual distribution dependent (D3) resampling method. Simulation results exhibit lesser values for root mean square error (RMSE) in comparison to that for systematic resampling. D3 resampling is shown to improve particle diversity after each iteration, thereby affecting the overall quality of estimation. However, computational burden is significantly increased owing to few excessive computations within the newly formulated resampling framework. With a view to obtaining parallel speedup we introduce a CUDA version of the proposed method for necessary acceleration by GPU. The GPU programming model is detailed in the context of this paper. Implementation issues are discussed along with illustration of empirical computational efficiency, as obtained by executing the CUDA code on Quadro 2000 GPU. The GPU enabled code has a speedup of 3 and 4 over the sequential executions of systematic and D3 resampling methods respectively. Performance both in terms of RMSE and running time have been elaborated with respect to different selections for threads per block towards effective implementations. It is in this context that, we further introduce a cost to performance metric (CPM) for assessing the algorithmic efficiency of the estimator, involving both quality of estimation and running time as comparative factors, transformed into a unified parameter for assessment. CPM values for estimators obtained from all such different choices for threads per block have been determined and a final value for the chosen parameter is resolved for generation of a holistic effective estimator.  相似文献   
4.
The prototyping of complex sheet metal parts using single point incremental forming (SPIF) requires the generation of optimal tool paths and/or tool path sequences that ensure that the formed part is within geometric design specifications. The presence of a multitude of features on complex parts leads to multiple inaccuracy inducing phenomena occurring simultaneously due to interactions between the features. This paper proposes a network analysis methodology using topological conceptual graphs to capture the effects of different phenomena on the final accuracy of a sheet metal part manufactured by SPIF. Using this framework optimized tool paths can be generated that compensate for the inaccuracy inducing behavior. Tool path generation algorithms to create partial tool paths that account for the accuracy of specific features in the part based on the proposed framework are also presented. Finally, the creation of integrated tool paths maintaining complementarity between tool paths and desired continuity behavior using non-uniform cubic B-splines is illustrated. A number of case studies demonstrating the applicability of the integrated framework are discussed, where the maximum deviations in the part are significantly reduced and the average absolute deviations for the complete part are brought down to less than 0.5 mm.  相似文献   
5.
Organic solvent nanofiltration (OSN) is gradually expanding from academic research to industrial implementation. The need for membranes with low and sharp molecular weight cutoffs that are able to operate under aggressive OSN conditions is increasing. However, the lack of comparable and uniform performance data frustrates the screening and membrane selection for processes. Here, a collaboration is presented between several academic and industrial partners analyzing the separation performance of 10 different membranes using three model process mixtures. Membrane materials range from classic polymeric and thin film composites (TFCs) to hybrid ceramic types. The model solutions were chosen to mimic cases relevant to today's industrial use: relatively low molar mass solutes (330–550 Da) in n-heptane, toluene, and anisole.  相似文献   
6.
Journal of Applied Electrochemistry - The choice of the electroplating conditions of Ni-based alloys has always been a serious research question. In this study, an artificial neural network based...  相似文献   
7.
In many applications, topography represents the main external features of a surface. This paper describes the topography of the flank wear surface and also presents the relationship between the maximum flank wear and the topography parameters (roughness parameters) of the flank wear surface during the turning operation. A modern CNC lathe machine (Okuma LH35-N) was used for the machine turning operation. Three-dimensional surface roughness parameters of the flank wear surface were measured by a surface texture instrument (from Talysurf series) using surface topography software (Talymap). Based on the resulting experimental data, it is found that as the flank wear increases, the roughness parameters (sRa, sRq, and sRt) on the flank surface increase significantly. The greater the roughness value of the flank wear surface, the higher the friction of the tool on the workpiece and the greater the heat generation that will occur, thus ultimately causing tool failure. On the other hand, positive skewness (sRsk) indicates the presence of a small number of spikes on the flank surface of the cutting tool, which could quickly wear off during the machining process.  相似文献   
8.
Performance of four microbial fuel cells (MFC-1, MFC-2, MFC-3 and MFC-4) made up of earthen pots with wall thicknesses of 3, 5, 7 and 8.5 mm, respectively, was evaluated. The MFCs were operated in fed batch mode with synthetic wastewater having sucrose as the carbon source. The power generation decreased with increase in the thickness of the earthen pot which was used to make the anode chamber. MFC-1 generated highest sustainable power density of 24.32 mW/m(2) and volumetric power of 1.04 W/m(3) (1.91 mA, 0.191 V) at 100 Ω external resistance. The maximum Coulombic efficiencies obtained in MFC-1, MFC-2, MFC-3 and MFC-4 were 7.7, 7.1, 6.8 and 6.1%, respectively. The oxygen mass transfer and oxygen diffusion coefficients measured for earthen plate of 3 mm thickness were 1.79 × 10(-5) and 5.38 × 10(-6) cm(2)/s, respectively, which implies that earthen plate is permeable to oxygen as other polymeric membranes. The internal resistance increased with increase in thickness of the earthen pot MFCs. The thickness of the earthen material affected the overall performance of MFCs.  相似文献   
9.
10.
ABSTRACT

Event-triggering strategy is one of the real-time control implementation techniques which aims at achieving minimum resource utilisation while ensuring the satisfactory performance of the closed-loop system. In this paper, we address the problem of robust stabilisation for a class of nonlinear systems subject to external disturbances using sliding mode control (SMC) by event-triggering scheme. An event-triggering scheme is developed for SMC to ensure the sliding trajectory remains confined in the vicinity of sliding manifold. The event-triggered SMC brings the sliding mode in the system and thus the steady-state trajectories of the system also remain bounded within a predesigned region in the presence of disturbances. The design of event parameters is also given considering the practical constraints on control execution. We show that the next triggering instant is larger than its immediate past triggering instant by a given positive constant. The analysis is also presented with taking delay into account in the control updates. An upper bound for delay is calculated to ensure stability of the system. It is shown that with delay steady-state bound of the system is increased than that of the case without delay. However, the system trajectories remain bounded in the case of delay, so stability is ensured. The performance of this event-triggered SMC is demonstrated through a numerical simulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号