首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   1篇
化学工业   45篇
能源动力   1篇
无线电   3篇
一般工业技术   3篇
冶金工业   2篇
  2020年   1篇
  2019年   1篇
  2014年   1篇
  2013年   3篇
  2007年   1篇
  2006年   7篇
  2005年   9篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   5篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
排序方式: 共有54条查询结果,搜索用时 31 毫秒
1.
Fracture toughness of adjacent flow weld lines, defined as weld lines that occur when two flow fronts meet and continue to flow together in the same direction (meld line or hot weld line), was evaluated by the single‐edge notched‐bend (SENB) method using three differently‐shaped obstructive pins. Although the fracture toughness varied depending upon the shapes of the pin, the values could be standardized as the distance from the meeting point of the two flow fronts flowing around the pin. The fracture toughness decreased drastically from the meeting point along the weld line and then slightly increased. These characteristic features could be explained by flow‐induced molecular orientation at the weld line interface. The molecules around the meeting point that were initially oriented parallel to the weld line due to fountain flow were able to relax, and then entanglement across the weld line interface developed because the flow stopped in the middle of the filling process, resulting in high fracture toughness. In contrast, the material at the downstream side of the weld line continued flowing during the filling process, being stretched along the flow direction. So, the molecular orientation at this area could not relax. In addition, the V‐notch shape, i.e., the depth and length at the surface of the weld line, which also varied depending on the shape of the obstacles, was considered to be identical when the meeting point was allowed to be a datum point. Thus, the meeting point was found to be a significant factor when the properties of weld lines are investigated. POLYM. ENG. SCI., 45:1059–1066, 2005. © 2005 Society of Plastics Engineers  相似文献   
2.
The binding thermodynamics of the HIV-1 protease inhibitor acetyl pepstatin and the substrate Val-Ser-Gln-Asn-Tyr-Pro-Ile-Val-Gln, corresponding to one of the cleavage sites in the gag, gag-pol polyproteins, have been measured by direct microcalorimetric analysis. The results indicate that the binding of the peptide substrate or peptide inhibitor is entropically driven; i.e., it is characterized by an unfavorable enthalpy and a favorable entropy change, in agreement with a structure-based thermodynamic analysis based upon an empirical parameterization of the energetics. Dissection of the binding enthalpy indicates that the intrinsic interactions are favorable and that the unfavorable enthalpy originates from the energy cost of rearranging the flap region in the protease molecule. In addition, the binding is coupled to a negative heat capacity change. The dominant binding force is the increase in solvent entropy that accompanies the burial of a significant hydrophobic surface. Comparison of the binding energetics obtained for the substrate with that obtained for synthetic nonpeptide inhibitors indicates that the major difference is in the magnitude of the conformational entropy change. In solution, the peptide substrate has a higher flexibility than the synthetic inhibitors and therefore suffers a higher conformational entropy loss upon binding. This higher entropy loss accounts for the lower binding affinity of the substrate. On the other hand, due to its higher flexibility, the peptide substrate is more amenable to adapt to backbone rearrangements or subtle conformational changes induced by mutations in the protease. The synthetic inhibitors are less flexible, and their capacity to adapt is more restricted. The expected result is a more pronounced effect of mutations on the binding affinity of the synthetic inhibitors. On the basis of the thermodynamic differences in the mode of binding of substrate and synthetic inhibitors, it appears that a key factor to understanding resistance is given by the relative balance of the different forces that contribute to the binding free energy and, in particular, the balance between conformational and solvation entropy.  相似文献   
3.
Hygrothermally decomposed polyurethane (HD‐PUR) was mixed up to 20 phr in epoxidized natural rubber (with 50 mol % epoxidation; ENR50) recipes, and the curing and mechanical behaviors were studied. Mechanical testing of the ENR50/HD‐PUR vulcanizates determined the tensile, tear, compression‐set, hardness, abrasion, hysteresis, and resilience properties. No significant changes were observed in the tensile properties with the incorporation of HD‐PUR. The ENR50 compounds showed an increase in compression set with increasing HD‐PUR content. Rubbers cured by a semi‐efficient vulcanization system gave the best overall performance. A further improvement in curing and mechanical properties was achieved by the carbon black grade N330 being replaced with a more active grade (N375). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2265–2276, 2002  相似文献   
4.
A previous study has shown that the adhesion between the film and substrate of film‐insert injection‐molded poly(propylene) (PP) film/PP substrate was evident with the increases in barrel temperature and injection holding pressure. In this second part of the research work, the crystallinity at the interfacial region (i.e., region between the film and the injected substrate) was extensively studied using FTIR imaging, polarized light microscopy, and DSC in an attempt to determine the level of influence that crystallinity has on the interface and bulk mechanical properties. Consequently, a more thorough and clearer picture of the influence of the inserted film on the interfacial crystallinity and subsequently the substrate mechanical properties, such as peel strength and impact strength, has been revealed. The initial proposition that crystallinity could enhance film–substrate interfacial bonding has been confirmed, judging from the higher peel strength with increasing crystallinity at the interfacial region. Nevertheless, the change in crystallinity was not only confined to the interfacial region. With the film acting as heat‐transfer inhibitor between the injected resin and the mold wall, the total crystal structure of the substrate was substantially altered, which subsequently affected the bulk mechanical properties. The lower impact strength of film‐insert injection‐molded samples compared to that of samples without film inserts provided evidence of how the film could impart inferior properties to the substrate. The difference in cooling rate between the substrate and film might also cause other defects such as warpage and/or residual stress build‐up within the product. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 294–301, 2005  相似文献   
5.
The effect of processing variables on the rheological properties of PVC/ENR blends was investigated. The role of crosslinking in determining the flow behavior of blends was also examined by means of dynamically cured blends. It was found that PVC/ENR blends yield melts that are power law fluids. The flow of the melts improves with an increase in temperature and shear rate. However, the introduction of crosslinks reverses this trend, although under more rigorous conditions, the influence of crosslinks is superseded, and subsequently, flow becomes shear rate and temperature dependent. PVC/ENR systems also manifested elastic phenomena. The dependence of the elastic phenomena such as die swell and melt fracture on L/D ratio of the die was demonstrated.  相似文献   
6.
The effect of di-2-ethylhexyl phthalate (DOP) plasticizer on the degradation behaviour of 50/50 poly(vinyl chloride)/epoxidized natural rubber (PVC/ENR) blend was studied by long-term exposure to ambient conditions (27–30°C) in the laboratory. While the unplasticized blend showed obvious changes in physical properties such as hardening, loss of elasticity and embrittlement, the plasticized blend retained its properties. Thermo-oxidative ageing studies were carried out by evaluating the mechanical properties before and after ageing in an air oven at 80°C for 168 h. The relatively rapid degradation of PVC/ENR blend has been attributed to the high concentration of epoxy groups and the occurrence of ring-opening reactions to form ether crosslinks. It was found that the plasticizer confers adequate stabilization upon the addition of a certain threshold amount. The optimum amount of plasticizer required to adequately stabilize the blend is 20 phr. Above this there is a tendency for plasticizer migration to occur. The use of an antioxidant in conjunction with the plasticizer further stabilizes the blend. The general trend is of decrease in mechanical and physical properties with increase in DOP concentration. In addition, ease of processing also increases as indicated by the torque maxima and minima obtained from the Brabender plastograms.  相似文献   
7.
Being polar and compatible with poly(vinyl chloride), epoxidized natural rubber (ENR) is similar in behaviour to acrylonitrile butadiene rubber (NBR). To assess the extent of this similarity, the mechanical properties of 50/50 blends of PVC with these two rubbers were compared. Their response to thermo-oxidative ageing in the presence of an antioxidant and a base was also investigated by ageing the blends at 100°C for 7 days. Studies involving mechanical properties and FTIR were used to evaluate the extent of thermal degradation. The results revealed that blends of ENR show mechanical properties which are as good as, and in some instances better than, those of the NBR blends. However, the ENR blends with PVC are very prone to oxidative ageing. This might be attributed to the susceptibility of the oxirane group to ring-opening reactions, particularly in the presence of PVC, which yields HCl as it degrades. The amine-type antioxidant 2,24-trimethyl-1,2-dihydroquinoline (TMQ) improved the oxidative stability of both blends. This was more significant in the ENR blend, which in some cases attained stability comparable with that of NBR. The addition of a base, calcium stearate [Ca(St)2], did not show any influence in the PVC/ENR blend, even though it was expected to curb acid-catalysed degradation. Ca(St)2, however, improved the oxidative stability of the PVC/NBR blend. The combination of optimum amounts of TMQ and Ca(St)2 effectively improved the tensile strength of both unaged blends, without appreciable adverse effect on elongation at break. This combination also imparted stability better than that of TMQ alone.  相似文献   
8.
Amlabu  B. A.  Umaru  S.  Dauda  M.  Obada  D. O.  Csaki  S.  Bansod  N. D.  Dodoo-Arhin  D.  Fasanya  O. O. 《SILICON》2020,12(6):1311-1324
Silicon - In this study, an evaluation has been made into the influence of milling time on the thermo-physical and fracture properties of a MgO-Al2O3-SiO2 system. The powdery and compacted...  相似文献   
9.
The effect of heat sealing temperature on the mechanical properties and morphology of OPP/CPP laminate films was investigated. The laminated films were placed in an impulse type heat sealing machine with both CPP sides facing each other. The temperatures investigated ranged from 100 to 250°C. T‐peel and tensile tests in combination with SEM were used to characterize the heat seals. A minimum seal initiation temperature of 120°C was identified for OPP/CPP laminate heat sealing. Peel strength increased sharply from zero at 110°C to maximum at 120°C, after which a gradual decrease was observed. Tensile strength initially increased until 120°C, after which it gradually decreased until 170°C and assumed a constant value beyond that. The initial rise has been associated to cold crystallization, while the reduction between 120°C and 170°C was due to relaxation in molecular orientation. Beyond 170°C, all the orientation in the laminate has been lost so orientation effects are nullified. Morphological studies with SEM revealed that seals were partially formed at lower temperatures, while the laminates were totally fused together at high temperatures, with intermediate temperatures showing properties that lie in between. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 753–760, 2005  相似文献   
10.
An 85-year-old man was admitted with 6-month history of incapacitating orthostatic hypotension. Investigation led to the discovery of sympathetic dysautonomia, sensorimotor neuropathy and malignant lymphoproliferative disease. Several attempts to treat the orthostatic hypotension or the neoplastic disease failed to improve his condition. Orthostatic hypotension precipitated by sympathetic dysautonomia may be an infrequent effect of early malignant lymphoproliferative disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号