首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   3篇
化学工业   5篇
能源动力   1篇
轻工业   1篇
无线电   1篇
一般工业技术   2篇
自动化技术   3篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2016年   2篇
  2015年   3篇
  2012年   2篇
  2008年   1篇
  1999年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
2.
Honne oil methyl ester (HOME) is produced from a nonedible vegetable oil, namely, honne oil, available abundantly in India. It has remained as an untapped new possible source of alternative fuel that can be used for diesel engines. The present research is aimed at investigating experimentally the performance, exhaust emission, and combustion characteristics of a direct injection diesel engine (single cylinder, water cooled) typically used in agricultural sector over the entire load range when fuelled with HOME and diesel fuel blends, HM20 (20% HOME + 80% diesel fuel)–HM100. The properties of these blends are found to be comparable with diesel fuel conforming to the American and European standards. The combustion parameters of HM20 are found to be slightly better than neat diesel (ND). For other blend ratios, these combustion parameters deviated compared with ND. The performance (brake thermal efficiency (BTE), brake‐specific fuel consumption, and exhaust gas temperature) of HM20 is better than ND. For other blend ratios, BTE is inferior compared with ND. The emissions (CO and SO) of HM20–HM100, throughout the entire load range, are dropped significantly compared with ND. Unburned hydrocarbon emissions of HM20–HM40, throughout the entire load range, is slightly decreased, whereas for other blend ratios, it is increased compared with ND. NOx emissions of HM20, throughout the entire load range, is slightly increased, whereas for other blend ratios, it is slightly decreased. The reductions in exhaust emissions together with increase in BTE made the blend HM20 a suitable alternative fuel for diesel fuel and thus could help in controlling air pollution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
3.
Wireless Personal Communications - Internet of Things is one of the most versatile technologies in existence today. It has taken over our day to day activities and thus has many applications that...  相似文献   
4.
A facile synthesis of homoallylic alcohols is achieved by the allylation of aldehydes with allylic metal reagents or allyl halides using copper fluorapatite (CuFAP) as catalyst under mild reaction conditions. A variety of aldehydes were converted to the corresponding homoallylic alchohols, demonstrating the versatility of the reaction.  相似文献   
5.
The first hydrosilylation of esters catalyzed by a well defined iron complex has been developed. Esters are converted to the corresponding alcohols at 100 °C, under solvent‐free conditions and visible light activation.  相似文献   
6.
Neural Computing and Applications - Obfuscating an iris recognition system through forged iris samples has been a major security threat in iris-based authentication. Therefore, a detection...  相似文献   
7.
Synthesis of three arms star‐shaped poly‐β‐alanine (3‐b‐ala) based on tri(prop‐2‐yn‐1‐yl) benzene‐1,3,5‐tricarboxylate (TBT) and azido terminated poly‐β‐alanine (N3‐P‐ala) was performed using click reaction. TBT was synthesized by nucleophilic substitution reaction between propargyl alcohol and 1,3,5‐benzenetricarbonyltrichloride. For the first time, N3‐P‐ala was synthesized through anionic polymerization of acrylamide using sodium azide as an initiator. TBT was characterized by FT‐IR and 1HNMR. N3‐p‐ala was characterized by FT‐IR, GPC, and 1HNMR and 3‐b‐ala was characterized by FT‐IR, GPC, 1HNMR, TGA, and XRD. The synthesized 3‐b‐ala was used for drug loading and releasing studies. Polymer loaded drug (3‐b‐ala‐D) hybrid was used in in vitro studies of drug (Diclofenac sodium) release in phosphate buffer solution (PBS) at 37 ± 0.5°C and pH 7.4. The drug loading and releasing studies were analyzed by UV‐visible spectrophotometer. 3‐b‐ala‐D was examined by AFM to analyze the surface morphology and roughness. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42124.  相似文献   
8.
Polyaniline (PANI) is one of the most common polymers known for its conducting properties. However, poor water solubility limits its applications. In this work, PANI has been functionalized with sulfonic acid groups to produce sulfonated PANI (SPANI) offering excellent solubility in water. To compensate for the decrease of electrical conductivity due to functionalization, SPANI was combined with reduced graphene oxide (RGO) to form SPANI/RGO composites with interesting optical, thermal, and electrical properties. The composites have been characterized using X‐ray diffraction (XRD), field emission scanning electron microscopy, UV–vis absorption spectroscopy, Raman spectroscopy, Fourier‐transform infrared spectroscopy, X‐ray photoelectron spectroscopy, thermogravimetric analysis, cyclic voltammetry, and four probe electrical conductivity measurement. The SPANI/RGO composites show increased thermal stability, reduced optical band gap and improved electrochemical properties compared with the pure polymer. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42766.  相似文献   
9.
A combustion technique is used to study the synthesis of carbon nano tubes from waste plastic as a precursor and Ni/Mo/MgO as a catalyst. The catalytic activity of three components Ni, Mo, MgO is measured in terms of amount of carbon product obtained. Different proportions of metal ions are optimized using mixture experiment in Design expert software. D-optimal design technique is adopted due to nonsimplex region and presence of constraints in the mixture experiment. The activity of the components is observed to be interdependent and the component Ni is found to be more effective. The catalyst containing Ni0.8Mo0.1MgO0.1 yields more carbon product. The structure of catalyst and CNTs are studied by using SEM, XRD, and Raman spectroscopy. SEM analysis shows the formation of longer CNTs with average diameter of 40–50 nm.  相似文献   
10.

In spite of the prominence and robustness of iris recognition systems, iris images acquisition using heterogeneous cameras/sensors, is the prime concern in deploying them for wide-scale applications. The textural qualities of iris samples (images) captured through distinct sensors substantially differ due to the differences in illumination and the underlying hardware that yields intra-class variation within the iris dataset. This paper examines three miscellaneous configurations of convolution and residual blocks to improve cross-domain iris recognition. Further, the finest architecture amongst three is identified by the Friedman test, where the statistical differences in proposed architectures are identified based on the outcomes of Nemeny and Bonferroni-Dunn tests. The quantitative performances of these architectures are perceived on several experiments simulated on two iris datasets; ND-CrossSensor-Iris-2013 and ND-iris-0405. The finest model is referred to as “Collaborative Convolutional Residual Network (CCRNet)” and is further examined on several experiments prepared in similar and cross-domains. Results depict that least two error rates reported by CCRNet are 1.06% and 1.21% that enhances the benchmark for the state of the arts. This is due to fast convergence and rapid weights updation achieved from convolution and residual connections, respectively. It helps in recognizing the micro-patterns existing within the iris region and results in better feature discrimination among large numbers of iris subjects.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号