首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   2篇
化学工业   8篇
  2020年   2篇
  2017年   3篇
  2016年   1篇
  2015年   2篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Abstract

Lung deposited surface area (LDSA) is a relatively new metric that has been argued to be more accurate at predicting health effects from aerosol exposure. For typical atmospheric aerosol, the LDSA concentration depends mainly on the concentration of ultrafine particles (e.g. vehicular exhaust emissions and residential wood combustion) and therefore optical methods cannot be used to measure and quantify it. The objective of this study was to investigate and describe typical characteristics of LDSA under different urban environments and evaluate how a diffusion charging-based Pegasor AQ Urban sensor (Pegasor Ltd., Finland) can be used as an alternative to optical sensors when assessing local combustion emissions and respective LDSA concentrations. Long-term (12?months) sensor measurements of LDSA were carried out at three distinctly different measurement sites (four sensor nodes) in the Helsinki metropolitan area, Finland. The sites were affected mainly by vehicular exhaust emission (street canyon and urban background stations) and by residential wood combustion (two detached housing area stations). The results showed that the accuracy of the AQ Urban was good (R2 = 0.90) for the measurement of LDSA when compared to differential mobility particle sizer. The mean concentrations of LDSA were more than twice as high at the street canyon (mean 22 µm2 cm?3) site when compared to the urban background site (mean 9.4 µm2 cm?3). In the detached housing area, the mean concentrations were 12 µm2 cm?3, and wood combustion typically caused high LDSA peaks in the evenings. High correlations and similar diurnal cycles were observed for the LDSA and black carbon at street canyon and urban background stations. The utilization of a small-scale sensor network (four nodes) showed that the cross-station variability in hourly LDSA concentrations was significant in every site, even within the same detached housing area (distance between the two sites ~670?m).  相似文献   
2.
The triboelectric charging of fungal spores was experimentally characterized during rebound and resuspension. A fungal spore source strength tester (FSSST) was used as a primary aerosol generator for spores of three fungal species and two powders (silicon carbide and silver). The critical velocity of rebound was determined using a variable nozzle area impactor (VNAI), and the charging state of particles after resuspension and rebound was measured using the FSSST, different impactor setups, electrometers, and optical particle counters. In the impactor setups and the FSSST, five different surface materials relevant for indoor environments were used (steel, glass, polystyrene, paper, and polytetrafluoroethylene). The critical velocity of rebound was determined to be 0.57 m/s for fungal spores, which is relatively low compared to silicon carbide and previous results for micron-sized aerosol particles. Based on the rebound impactor measurements, we were able to define the crucial parameters of charge transfer for different particle–surface material pairs. A contact charge parameter, which describes the triboelectric charging during rebound, was found to have a negative correlation with the charging state of the particles after the resuspension from an impactor. This connects the triboelectric charging during rebound and resuspension to each other. Based on the contact charge parameter values, quantified triboelectric series could be formed. The results of this work show that fungal spores can be charged both positively and negatively during rebound and resuspension depending on the fungal species and surface material.

Copyright © 2016 American Association for Aerosol Research  相似文献   

3.
The critical velocity of rebound was determined for spherical ammonium fluorescein particles in the size range of 0.44–7.3 μm. The method was based on measurements with a variable nozzle area impactor (VNAI) and numerical simulations. A comparison to previous results with spherical silver particles obtained with the same method showed that the critical velocity was approximately two orders of magnitude higher for ammonium fluorescein than for silver at the same size range. Among the hard test materials, including steel, aluminium, molybdenum, and Tedlar, the surface material had no significant effect on the critical velocity of rebound within the accuracy of the method. On the contrary, the critical velocity was observed to be highly dependent on the obliquity of the impact at the onset of rebound. While the ratio of the maximum tangential and normal velocities was defined as a measure for the obliquity, the critical velocity was found to be more than a magnitude smaller for very oblique impacts with the velocity ratio above 9 than for close-to-normal impacts with the velocity ratio below 1.5. The results of this study can be considered as a link between the recently published critical velocity results for nanoparticles and the older results for micron-sized particles.

Copyright © 2017 American Association for Aerosol Research  相似文献   

4.
Detailed chemical characterization of exhaust particles from 23 individual city buses was performed in Helsinki, Finland. Investigated buses represented different technologies in terms of engines, exhaust after-treatment systems (e.g., diesel particulate filter, selective catalytic reduction, and three-way catalyst) and fuels (diesel, diesel-electric (hybrid), ethanol, and compressed natural gas). Regarding emission standards, the buses operated at EURO III, EURO IV, and EEV (enhanced environmentally friendly vehicle) emission levels. The chemical composition of exhaust particles was determined by using a soot particle aerosol mass spectrometer (SP-AMS). Based on the SP-AMS results, the bus emission particles were dominated by organics and refractory black carbon (rBC). The mass spectra of organics consisted mostly of hydrocarbon fragments (54–86% of total organics), the pattern of hydrocarbon fragments being rather similar regardless of the bus type. Regarding oxygenated organic fragments, ethanol-fueled buses had unique mass-to-charge ratios (m/z) of 45, 73, 87, and 89 (mass fragments of C2H5O+, C3H5O2+, C4H7O2+, and C4H9O2+, respectively) that were not detected for the other bus types at the same level. For rBC, there was a small difference in the ratio of C4+ and C5+ to C3+ for different bus types but also for the individual buses of the same type. In addition to organics and rBC, the presence of trace metals in the bus emission particles was investigated.

Copyright © 2017 American Association for Aerosol Research  相似文献   

5.
6.
Abstract

Particle deposition in the human respiratory tract is considered to have negative effects on human health. The lung deposited surface area (LDSA) is an important metric developed to assess the negative health effects of particles deposited in the alveolar region of the human respiratory tract. The measurement of the LDSA is frequently based on the detection of the electrical current carried by diffusion charged particles. Various conversion factors can be used to convert the electric current into LDSA concentration with relatively good accuracy up to the size about 300-600?nm. In this study, we introduce stage-specific LDSA conversion factors for electrical low pressure impactor (ELPI+) data, which enable accurate and real time LDSA concentration and LDSA size distribution measurements in the particle size range from 6?nm to 10?µm. This wide size range covers most of the alveolar deposition of particles, which has not been possible previously by electrical methods. Also, the conversion factors for tracheobronchial and head airways particle surface area deposition were determined, and the stage-specific conversion factors were compared with the single-factor data conversion method. Furthermore, the stage-specific calibration was tested against real-world particle size distributions by simulations and against laboratory-generated aerosols. Particles larger than 300?nm were observed to significantly affect the total LDSA concentration. Stage-specific conversion factors are especially required while measuring aerosols containing larger particles or when considering the surface area deposition in the tracheobronchial region and head airways. The method and the conversion factors introduced in this study can be used to monitor LDSA concentrations reliably in various environments containing particles in different size ranges.

Copyright © 2020 American Association for Aerosol Research  相似文献   
7.
Near traffic routes and urban areas, the outdoor air particle number concentration is typically dominated by ultrafine particles. These particles can enter into the nearby buildings affecting the human exposure on ultrafine particles indoors. In this study, we demonstrate an aerosol generation system which mimics the characteristic traffic related aerosol. The aerosol generation system was used to determine the size-resolved particle filtration efficiencies of five typical commercial filters in the particle diameter range of 1.3–240 nm. Two different HEPA filters were observed to be efficient in all particle sizes. A fibrous filter (F7) was efficient at small particle sizes representing the nucleation mode of traffic related aerosol, but its efficiency decreased down to 60% with the increasing particle size. In contrast, the filtration efficiency of an electrostatic precipitator (ESP) increased as a function of the particle size, being more efficient for the soot mode of traffic related aerosol than for the nucleation mode. An electret filter with a charger was relatively efficient (filtration efficiency >85%) at all the observed particle sizes. The HEPA, F7 and electret filters were found to practically remove the particles/nanoclusters smaller than 3 nm. All in all, the filtration efficiencies were observed to be strongly dependent on the particle size and significant differences were found between different filters. Based on these results, we suggest that the particulate filter test standards should be extended to cover the ultrafine particles, which dominate the particle concentrations in outdoor air and are hazardous for public health.

Copyright © 2017 American Association for Aerosol Research  相似文献   

8.
The extraction of oils based on animal fat and vegetable oil from two types of spent bleaching earths, namely from the acidic sepiolite and the nonacidic palygorskite, was investigated by the Soxhlet method with hexane as a solvent. The yields of oil were independent of the feedstock, whereas a much lower oil yield was obtained with palygorskite exhibiting also a smaller surface area as compared to sepiolite which provided a higher yield. The glyceride compositions were very similar in bleached and extracted oils, while slightly lower melting and crystallization energies were determined by differential scanning calorimetry for the extracted oils bleached with acidic clay indicating minor hydrolysis of triglycerides.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号