首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   236篇
  免费   24篇
电工技术   2篇
化学工业   63篇
金属工艺   3篇
机械仪表   12篇
建筑科学   3篇
能源动力   15篇
轻工业   8篇
水利工程   1篇
无线电   37篇
一般工业技术   69篇
冶金工业   4篇
原子能技术   2篇
自动化技术   41篇
  2023年   4篇
  2022年   4篇
  2021年   9篇
  2020年   10篇
  2019年   14篇
  2018年   14篇
  2017年   9篇
  2016年   13篇
  2015年   12篇
  2014年   14篇
  2013年   14篇
  2012年   15篇
  2011年   27篇
  2010年   14篇
  2009年   22篇
  2008年   24篇
  2007年   15篇
  2006年   8篇
  2005年   5篇
  2004年   1篇
  2003年   1篇
  2002年   4篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1976年   1篇
排序方式: 共有260条查询结果,搜索用时 15 毫秒
1.
Volkan Can  Oguz Okay 《Polymer》2007,48(17):5016-5023
The swelling behavior and the elastic properties of nanocomposite hydrogels have been investigated. The hydrogels were prepared by free-radical polymerization of the monomers acrylamide (AAm), N,N-dimethylacrylamide (DMA), and N-isopropylacrylamide (NIPA) in aqueous clay suspensions at 21 °C. Laponite with a radius of gyration in distilled water of 20 nm was used as clay particles in the hydrogel preparation. The reactions with AAm monomer were carried out in the presence of the chemical crosslinker N,N′-methylenebis(acrylamide) (BAAm). It was found that the volume of nanocomposite hydrogels immersed in water rapidly increases and attains a maximum value after about one day. Surprisingly, further increase in the swelling time results in the deswelling of the gels until they reach a limiting swelling ratio after about 5 days. This unusual swelling behavior is observable only when the clay concentration in the hydrogel is above the overlap threshold c. Swelling measurements combined with the elasticity tests show that the effective crosslink density first decreases, but then increases with increasing time of swelling of the hydrogels. The results were explained in terms of the rearrangements of the highly entangled polymer chains and clay particles during the gel volume change.  相似文献   
2.
3.
4.
Measuring semantic traits for phenotyping is an essential but labor‐intensive activity in horticulture. Researchers often rely on manual measurements which may not be accurate for tasks, such as measuring tree volume. To improve the accuracy of such measurements and to automate the process, we consider the problem of building coherent three‐dimensional (3D) reconstructions of orchard rows. Even though 3D reconstructions of side views can be obtained using standard mapping techniques, merging the two side‐views is difficult due to the lack of overlap between the two partial reconstructions. Our first main contribution in this paper is a novel method that utilizes global features and semantic information to obtain an initial solution aligning the two sides. Our mapping approach then refines the 3D model of the entire tree row by integrating semantic information common to both sides, and extracted using our novel robust detection and fitting algorithms. Next, we present a vision system to measure semantic traits from the optimized 3D model that is built from the RGB or RGB‐D data captured by only a camera. Specifically, we show how canopy volume, trunk diameter, tree height, and fruit count (FC) can be automatically obtained in real orchard environments. The experiment results from multiple data sets quantitatively demonstrate the high accuracy and robustness of our method.  相似文献   
5.
Isocyanate-based graphene oxide-containing polyimide foams were synthesized by a semi-prepolymer method. In this method, while the first solution containing pre-polymer was derived from pyromellitic dianhydride and excess polymethylene polyphenylene isocyanate (PM200), the second solution contains dianhydride derivatives, water, catalysts, surfactants, and graphene oxide. PIFs were prepared with 0%, 0.25%, 0.50%, 0.75%, and 1% graphene oxide by weight, respectively. PIFs exhibited a minimum side reaction and urea generation was not seen for all PIFs instead of imide bonding. The addition of graphene oxide (GO) leads to a more close-packed structure. Therefore, crosslinking density and thermal stability of graphene oxide-containing polyimide foams increased. Upon the addition of 1% GO, almost seven times higher compression strength was obtained compared to neat PIFs. Also, LOI values supported the theory that thermally stable and flame retardant PIFs can be synthesized via the isocyanate-based process with GO.  相似文献   
6.
Conducting polymers containing polyether pseudocages (P I , P II , P III ) have been synthesized via chemical oxidation of 1,5‐bis(1,1‐pyrrole)‐3‐oxabutane (M I ), 1,8‐bis(1,1‐pyrrole)‐3,6‐dioxahexane (M II ), and 1,11‐bis(1,1‐pyrrole)‐3,6,9‐trioxaundecane (M III ) using anhydrous FeCl3 in CHCl3. Because as obtained polymer resins did not give any response toward any cations, they were reduced (undoped) using chemical reducing agents. Tetrabutylammonium hydroxide was found to be more effective in undoping to obtain more reproducible and reusable polymer resins. The undoped polymer resins were tried in the extraction of rare earth metal ions from the aqueous medium. Among them, only P III resin removes La(III), Eu(III) and Yb(III) and can be employed for the preconcentration of these metal ions. For batch extraction of La(III), Eu(III) and Yb(III) at neutral pH values, percent recoveries of 98.0 ± 1.0, 90.7 ± 1.4, 87.3 ± 4.0, respectively, has been obtained. The sorption capacity is found as 1.3 mg of La(III) per gram of P III resin. The P III resin could be reused at least five times without significant change in its sorption capacity. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
7.
Polyester‐ and epoxy‐based composites containing glass and carbon fibers were manufactured using a vacuum‐assisted resin transfer molding (VARTM) process. Fourier transform infrared (FTIR) spectroscopy analyses were conducted to determine the interaction between fibers and matrix material. The results indicate that strong interaction was observed between carbon fiber and epoxy resin. However, weak interactions between remaining fiber‐matrix occur. Scanning electron microscopy (SEM) analysis was also performed to take some information about strength of interaction between fibers and matrix material. From SEM micrographs, it is concluded that the findings in SEM analysis support to that obtained in FTIR analysis. Another aim of the present work was to investigate the influence of matrix on composite properties. Hence, the strengths of composites having same reinforcement but different matrix systems in axial tension and transverse tension were compared. Short beam shear test has been conducted to characterize the interfacial strength in the composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
8.
This study presents an energetic performance analysis for a combined power generation system consisting of a solid oxide fuel cell (SOFC) and an organic Rankine cycle (ORC). In order to simulate the SOFC–ORC combined system under steady‐state conditions, a mathematical model is developed. The developed model is used to determine the potential effects caused by the changes of the design parameters on the energetic performance of the combined system. As design parameters, turbine inlet pressure, condenser temperature, fuel utilization, current density, compressor pressure ratio, and cell operating temperature are taken into account. In this regard, the electrical power and First Law efficiency are estimated by parametrical analysis and discussed comprehensively. Results of these analyses show that the efficiency is increased about 14–25% by recovering SOFC waste heat through ORC based on investigated design parameter conditions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
9.
10.
Cobalt and nickel are among the most important nonferrous metals. The using of flat sheet supported liquid membranes (FSSLMs) to remove metals from wastewaters has been used actively by the scientific and industrial communities. In this study, the selective separation of cobalt from thiocyanate solutions containing cobalt and nickel by FSSLM was examined using tri-n-octylamine (Alamine 300) as carrier. The FSSLM was consisted of extractant, flat sheet support and organic solvent. The various parameters were studied to determine the optimum extraction and striping conditions of cobalt and nickel. These parameters were stirring speeds of phases, NH4SCN concentration, pH, diluent type, extractant concentration, stripping reagent concentration and modifier concentration. Concentration of cobalt and nickel were determined by Shimadzu AA-6701GF spectrophotometer. In the optimum conditions, selective separation of cobalt was achieved with an efficiency of 98.4% within 8 h, for equimolar feed mixtures, 400 mg/L Co + 400 mg/L Ni, and the separation factor of Co(II) over Ni(II) was 234.4. In addition, for nonequimolar feed mixtures, 500 mg/L Co + 1000 mg/L Ni, Ni in excess, selective separation of cobalt was 99.9%, and the separation factor of Co was 506 in the same time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号