首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
化学工业   3篇
  2015年   1篇
  2014年   1篇
  2010年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
New bio‐based diblock copolymers were synthesized from poly(lactic acid) (PLA) and natural rubber (NR). NR polymer chains were modified to obtain hydroxyl telechelic natural rubber oligomers (HTNR). Condensation polymerization between PLA and HTNR was performed at 110°C during 24 or 48 h. The molecular weight of PLA and HTNR and the molar ratio PLA : HTNR were varied. The new ester linkage in the diblock copolymers was determined by 1H‐NMR. The molecular weight of the diblock copolymers determined from SEC agreed with that expected from calculation. The thermal behavior and degradation temperature were determined by DSC and TGA, respectively. The diblock copolymers were used as a toughening agent of PLA and as a compatibilizer of the PLA/NR blend. PLA blended with the diblock copolymer showed higher impact strength, which was comparable to the one of a PLA/NR blend. The former blend showed smaller dispersed particles as showed by SEM images, indicating the increase in miscibility in the blend due to the PLA block. The compatibilization was effective in the blends containing ~10 wt % of rubber. At a higher rubber content (>10 wt %), coalescence of the NR and diblock copolymer was responsible of the larger rubber diameter in the blends, which causes a decrease of the impact strength. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41426.  相似文献   
2.
The aim of this study was to improve the mechanical properties of thermoplastic starch foams prepared from cassava starch blended with natural rubber latex by reactive blending. Potassium persulfate was used as an initiator for graft copolymerization between the starch and natural rubber during baking. The starch–natural rubber graft copolymer (starch‐g‐NR copolymer) was successfully produced during both suspension and melt blending based on 1H‐NMR and FTIR characterization. Natural rubber increased the flexural modulus of starch/natural rubber foams without potassium persulfate, thus indicating the compatibility of the blends. The starch‐g‐NR copolymer, acting as a compatibilizing agent, enhanced the impact strength of foams, but it did not improve the flexural modulus. This may be due to the potassium persulfate decreasing the molecular weight of the natural rubber. Relative humidity also played an important role on the mechanical properties. Foams became more ductile at higher relative humidities. Since foam density increased with an increasing natural rubber content, the specific impact strength was also considered. A soil burial test showed that the cassava starch foams and foams containing 15 pph of natural rubber were fully biodegraded within 8 and 18 weeks, respectively. The starch‐g‐NR copolymer delayed biodegradation of foams and foams containing high natural rubber content, i.e., 35 pph, showed a low ability to be biodegraded. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
3.
This work involved the development of a synthetic method to produce a novel bio-based triblock copolymer (PLA-NR-PLA) that consisted of poly(lactic acid) and natural rubber. The 1H NMR analysis showed the presence of new ester linkages that resulted from a reaction between the carboxyl end-groups of the PLA prepolymer and the hydroxyl end-groups of the HTNR, together with the characteristics of the PLA endblock and the HTNR midblock. The Mn of PLA-NR-PLA as determined from the GPC agreed with that from the calculation. The DSC and TGA results also substantiated the formation of a block copolymer. PLA-NR-PLA acted as a toughening agent for PLA and as a compatibilizer in the PLA/NR blend. The PLA-NR-PLA was as good as a toughening agent as NR although the PLA-NR-PLA had a much lower molecular weight than the NR. The compatibilization effect was more dominant in the blend containing 10% rubber than in the blend that contained >10% rubber. The compatibilization effect was also observed in the morphology of the blend as a reduction in the rubber particle diameter. PLA-NR-PLA not only increased the impact strength of the blends, but also increased the elongation at break.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号