首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
化学工业   1篇
  2012年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
The formation of scratch‐resistant coating film prepared from colloidal silica and a polysiloxane matrix was investigated. Methyltrimethoxysilane (MTMS) was hydrolysed and mixed with silica sol (SiO2) at various compositions to form the hybrid hard‐coating nanocomposite film. The hydrolysed MTMS (polysiloxane) acts as the polymeric binder that is covalently linked to the colloidal silica surface and provides adhesion for the scratch resistant coating film to the substrate. The ratio between the polymeric matrix and the SiO2 nanoparticles was found to play a major role in controlling the coating film appearance and its resistance to scratching. At a SiO2 content < 30 wt.%, the agglomeration of the hydrolysed polysiloxane was observed and caused the opacity of the coating film. At a SiO2 content >70 wt.%, there was not enough polysiloxane to act as a binder for the SiO2, therefore a shrinkage upon solidification of the coating film caused cracking within the nanocomposite film. The optimum ratio was found to be at 40 wt.% ≤SiO2 ≤60 wt.%, where the films had a transparent, crack free hard coating, with excellent scratch resistance, good adhesion and very good environmental resistance. The nanoindentation revealed that the nanocomposite film, at the optimum loading, possessed a higher strength with a higher SiO2 loading. Film properties, including hardness, scratch resistance, adhesion and environmental resistance were also examined. The morphology of nanocomposite films was identified by atomic force microscopy (AFM) and scanning electron microscopy (SEM). © 2011 Canadian Society for Chemical Engineering  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号