首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   2篇
化学工业   3篇
能源动力   1篇
轻工业   1篇
一般工业技术   3篇
自动化技术   18篇
  2022年   2篇
  2017年   2篇
  2014年   4篇
  2012年   2篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
  1975年   1篇
排序方式: 共有26条查询结果,搜索用时 250 毫秒
1.
H.S. JeonG. Kim  D.H. Weinkauf 《Polymer》2003,44(19):5749-5758
The effects of clay dispersion and the interactions between clays and polymer chains on the viscoelastic properties of polymer/clay nanocomposites are investigated using oscillatory shear rheology, X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM). Four different montmorillonite silicates of natural clays, plasma-treated clays, and organically modified clays (OCs) have been used in this study. For the polyisoprene (PI)/clay nanocomposites, the exfoliation of the OC dispersed in the PI matrix is confirmed with XRD and SAXS although TEM images show both exfoliated and non-exfoliated nanoclay sheets. In contrast aggregation or intercalation is obtained for the other PI/clay composites studied here. Additionally, the effective maximum volume packing fraction of OC for the exfoliated nanocomposites is determined from the overlapping of dynamic viscosity at low frequency regime, in which the effective maximum volume packing fraction is larger than the percolation threshold determined from the storage modulus of the nanocomposites.  相似文献   
2.
Stream surfaces are a well‐studied and widely used tool for the visualization of 3D flow fields. Usually, stream surface seeding is carried out manually in time‐consuming trial and error procedures. Only recently automatic selection methods were proposed. Local methods support the selection of a set of stream surfaces, but, contrary to global selection methods, they evaluate only the quality of the seeding lines but not the quality of the whole stream surfaces. Global methods, on the other hand, only support the selection of a single optimal stream surface until now. However, for certain flow fields a single stream surface is not sufficient to represent all flow features. In our work, we overcome this limitation by introducing a global selection technique for a set of stream surfaces. All selected surfaces optimize global stream surface quality measures and are guaranteed to be mutually distant, such that they can convey different flow features. Our approach is an efficient extension of the most recent global selection method for single stream surfaces. We illustrate its effectiveness on a number of analytical and simulated flow fields and analyze the quality of the results in a user study.  相似文献   
3.
This article focuses on the transport characteristics of physical properties in fluids-in particular, visualizing the finite-time transport structure of property advection. Applied to a well-chosen set of property fields, the proposed approach yields structures giving insights into the underlying flow's dynamic processes.  相似文献   
4.
Data sets coming from simulations or sampling of real‐world phenomena often contain noise that hinders their processing and analysis. Automatic filtering and denoising can be challenging: when the nature of the noise is unknown, it is difficult to distinguish between noise and actual data features; in addition, the filtering process itself may introduce “artificial” features into the data set that were not originally present. In this paper, we propose a smoothing method for 2D scalar fields that gives the user explicit control over the data features. We define features as critical points of the given scalar function, and the topological structure they induce (i.e., the Morse‐Smale complex). Feature significance is rated according to topological persistence. Our method allows filtering out spurious features that arise due to noise by means of topological simplification, providing the user with a simple interface that defines the significance threshold, coupled with immediate visual feedback of the remaining data features. In contrast to previous work, our smoothing method guarantees a C1‐continuous output scalar field with the exact specified features and topological structures.  相似文献   
5.
Functions that optimize Laplacian‐based energies have become popular in geometry processing, e.g. for shape deformation, smoothing, multiscale kernel construction and interpolation. Minimizers of Dirichlet energies, or solutions of Laplace equations, are harmonic functions that enjoy the maximum principle, ensuring no spurious local extrema in the interior of the solved domain occur. However, these functions are only C0 at the constrained points, which often causes smoothness problems. For this reason, many applications optimize higher‐order Laplacian energies such as biharmonic or triharmonic. Their minimizers exhibit increasing orders of continuity but lose the maximum principle and show oscillations. In this work, we identify characteristic artifacts caused by spurious local extrema, and provide a framework for minimizing quadratic energies on manifolds while constraining the solution to obey the maximum principle in the solved region. Our framework allows the user to specify locations and values of desired local maxima and minima, while preventing any other local extrema. We demonstrate our method on the smoothness energies corresponding to popular polyharmonic functions and show its usefulness for fast handle‐based shape deformation, controllable color diffusion, and topologically‐constrained data smoothing.  相似文献   
6.
7.
Extremal lines and surfaces are features of a 3D scalar field where the scalar function becomes minimal or maximal with respect to a local neighborhood . These features are important in many applications, e.g. computer tomography, fluid dynamics, cell biology . We present a novel topological method to extract these features using discrete Morse theory. In particular, we extend the notion of ‘separatrix persistence’ from 2D to 3D, which gives us a robust estimation of the feature strength for extremal lines and surfaces. Not only does it allow us to determine the most important (parts of) extremal lines and surfaces, it also serves as a robust filtering measure of noise‐induced structures. Our purely combinatorial method does not require derivatives or any other numerical computations .  相似文献   
8.
Carbon black used for fuel cell catalyst support system is modified using nitrogen and allylamine plasma and its effect on the carbon surface and fuel cell performance are reported. Custom designed radio frequency tumbling plasma reactor is used to surface modify the carbon black. Boehms Titration method, XRD and TEM are performed to confirm and analyze the effects of plasma treatment on the carbon surface. In the fuel cell electrochemical study both the nitrogen and allylamine modified catalyst support system exhibited better discharge performance than the control system. Nitrogen moieties on the carbon surface helped to decrease the particle size of catalytically active sites and provided good anchoring of Pt to the surface thereby resulted in increased electrochemical performance in the fuel cell evaluation.  相似文献   
9.
This paper describes approaches to topologically segmenting 2D time-dependent vector fields. For this class of vector fields, two important classes of lines exist: stream lines and path lines. Because of this, two segmentations are possible: either concerning the behavior of stream lines or of path lines. While topological features based on stream lines are well established, we introduce path line oriented topology as a new visualization approach in this paper. As a contribution to stream line oriented topology, we introduce new methods to detect global bifurcations like saddle connections and cyclic fold bifurcations as well as a method of tracking all isolated closed stream lines. To get the path line oriented topology, we segment the vector field into areas of attracting, repelling, and saddle-like behavior of the path lines. We compare both kinds of topologies and apply them to a number of test data sets.  相似文献   
10.
We present an approach to analyze mixing in flow fields by extracting vortex and strain features as extremal structures of derived scalar quantities that satisfy a duality property: they indicate vortical as well as high-strain (saddletype) regions. Specifically, we consider the Okubo-Weiss criterion and the recently introduced MZ-criterion. While the first is derived from a purely Eulerian framework, the latter is based on Lagrangian considerations. In both cases high values indicate vortex activity whereas low values indicate regions of high strain. By considering the extremal features of those quantities, we define the notions of a vortex and a strain skeleton in a hierarchical manner: the collection of maximal 0D, 1D and 2D structures assemble the vortex skeleton; the minimal structures identify the strain skeleton. We extract those features using scalar field topology and apply our method to a number of steady and unsteady 3D flow fields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号